Package index
-
describe_posterior()
- Describe Posterior Distributions
-
describe_prior()
- Describe Priors
-
sexit()
- Sequential Effect eXistence and sIgnificance Testing (SEXIT)
-
as.numeric(<map_estimate>)
as.numeric(<p_direction>)
as.numeric(<p_map>)
as.numeric(<p_significance>)
- Convert to Numeric
-
map_estimate()
- Maximum A Posteriori probability estimate (MAP)
-
point_estimate()
- Point-estimates of posterior distributions
-
eti()
- Equal-Tailed Interval (ETI)
-
hdi()
- Highest Density Interval (HDI)
-
spi()
- Shortest Probability Interval (SPI)
-
ci()
- Confidence/Credible/Compatibility Interval (CI)
-
p_direction()
pd()
- Probability of Direction (pd)
-
p_map()
p_pointnull()
- Bayesian p-value based on the density at the Maximum A Posteriori (MAP)
-
p_rope()
- Probability of being in the ROPE
-
p_significance()
- Practical Significance (ps)
-
p_to_bf()
- Convert p-values to (pseudo) Bayes Factors
-
pd_to_p()
p_to_pd()
convert_p_to_pd()
convert_pd_to_p()
- Convert between Probability of Direction (pd) and p-value.
-
bayesfactor_parameters()
bayesfactor_pointnull()
bayesfactor_rope()
bf_parameters()
bf_pointnull()
bf_rope()
- Bayes Factors (BF) for a Single Parameter
-
rope()
- Region of Practical Equivalence (ROPE)
-
rope_range()
- Find Default Equivalence (ROPE) Region Bounds
-
equivalence_test()
- Test for Practical Equivalence
-
bayesfactor()
- Bayes Factors (BF)
-
bayesfactor_inclusion()
bf_inclusion()
- Inclusion Bayes Factors for testing predictors across Bayesian models
-
bayesfactor_models()
bf_models()
update(<bayesfactor_models>)
as.matrix(<bayesfactor_models>)
- Bayes Factors (BF) for model comparison
-
bayesfactor_parameters()
bayesfactor_pointnull()
bayesfactor_rope()
bf_parameters()
bf_pointnull()
bf_rope()
- Bayes Factors (BF) for a Single Parameter
-
bayesfactor_restricted()
bf_restricted()
as.logical(<bayesfactor_restricted>)
- Bayes Factors (BF) for Order Restricted Models
-
si()
- Compute Support Intervals
-
weighted_posteriors()
- Generate posterior distributions weighted across models
-
bic_to_bf()
- Convert BIC indices to Bayes Factors via the BIC-approximation method.
-
p_to_bf()
- Convert p-values to (pseudo) Bayes Factors
-
diagnostic_posterior()
- Posteriors Sampling Diagnostic
-
sensitivity_to_prior()
- Sensitivity to Prior
-
check_prior()
- Check if Prior is Informative
-
simulate_correlation()
simulate_ttest()
simulate_difference()
- Data Simulation
-
simulate_prior()
- Returns Priors of a Model as Empirical Distributions
-
simulate_simpson()
- Simpson's paradox dataset simulation
-
unupdate()
- Un-update Bayesian models to their prior-to-data state
-
effective_sample()
- Effective Sample Size (ESS)
-
mcse()
- Monte-Carlo Standard Error (MCSE)
-
estimate_density()
- Density Estimation
-
density_at()
- Density Probability at a Given Value
-
area_under_curve()
auc()
- Area under the Curve (AUC)
-
overlap()
- Overlap Coefficient
-
distribution()
distribution_custom()
distribution_beta()
distribution_binomial()
distribution_binom()
distribution_cauchy()
distribution_chisquared()
distribution_chisq()
distribution_gamma()
distribution_mixture_normal()
distribution_normal()
distribution_gaussian()
distribution_nbinom()
distribution_poisson()
distribution_student()
distribution_t()
distribution_student_t()
distribution_tweedie()
distribution_uniform()
rnorm_perfect()
- Empirical Distributions
-
mediation()
- Summary of Bayesian multivariate-response mediation-models
-
convert_bayesian_as_frequentist()
bayesian_as_frequentist()
- Convert (refit) a Bayesian model to frequentist
-
contr.equalprior()
contr.equalprior_pairs()
contr.equalprior_deviations()
- Contrast Matrices for Equal Marginal Priors in Bayesian Estimation
-
as.numeric(<map_estimate>)
as.numeric(<p_direction>)
as.numeric(<p_map>)
as.numeric(<p_significance>)
- Convert to Numeric
-
as.data.frame(<density>)
- Coerce to a Data Frame
-
sexit_thresholds()
- Find Effect Size Thresholds
-
reshape_iterations()
reshape_draws()
- Reshape estimations with multiple iterations (draws) to long format
-
diagnostic_draws()
- Diagnostic values for each iteration
-
model_to_priors()
- Convert model's posteriors to priors (EXPERIMENTAL)
-
disgust
- Moral Disgust Judgment