
Package index
-
describe_posterior() - Describe Posterior Distributions
-
describe_prior() - Describe Priors
-
sexit() - Sequential Effect eXistence and sIgnificance Testing (SEXIT)
-
as.numeric(<map_estimate>)as.numeric(<p_direction>)as.numeric(<p_map>)as.numeric(<p_significance>) - Convert to Numeric
-
map_estimate() - Maximum A Posteriori probability estimate (MAP)
-
point_estimate() - Point-estimates of posterior distributions
-
eti() - Equal-Tailed Interval (ETI)
-
hdi() - Highest Density Interval (HDI)
-
spi() - Shortest Probability Interval (SPI)
-
ci() - Confidence/Credible/Compatibility Interval (CI)
-
p_direction()pd() - Probability of Direction (pd)
-
p_map()p_pointnull() - Bayesian p-value based on the density at the Maximum A Posteriori (MAP)
-
p_rope() - Probability of being in the ROPE
-
p_significance() - Practical Significance (ps)
-
p_to_bf() - Convert p-values to (pseudo) Bayes Factors
-
pd_to_p()p_to_pd()convert_p_to_pd()convert_pd_to_p() - Convert between Probability of Direction (pd) and p-value.
-
bayesfactor_parameters()bayesfactor_pointnull()bayesfactor_rope()bf_parameters()bf_pointnull()bf_rope() - Bayes Factors (BF) for a Single Parameter
-
rope() - Region of Practical Equivalence (ROPE)
-
rope_range() - Find Default Equivalence (ROPE) Region Bounds
-
equivalence_test() - Test for Practical Equivalence
-
bayesfactor() - Bayes Factors (BF)
-
bayesfactor_inclusion()bf_inclusion() - Inclusion Bayes Factors for testing predictors across Bayesian models
-
bayesfactor_models()bf_models()update(<bayesfactor_models>)as.matrix(<bayesfactor_models>) - Bayes Factors (BF) for model comparison
-
bayesfactor_parameters()bayesfactor_pointnull()bayesfactor_rope()bf_parameters()bf_pointnull()bf_rope() - Bayes Factors (BF) for a Single Parameter
-
bayesfactor_restricted()bf_restricted()as.logical(<bayesfactor_restricted>)as.matrix(<bayesfactor_restricted>) - Bayes Factors (BF) for Order Restricted Models
-
si() - Compute Support Intervals
-
weighted_posteriors() - Generate posterior distributions weighted across models
-
bic_to_bf() - Convert BIC indices to Bayes Factors via the BIC-approximation method.
-
p_to_bf() - Convert p-values to (pseudo) Bayes Factors
-
diagnostic_posterior() - Posteriors Sampling Diagnostic
-
sensitivity_to_prior() - Sensitivity to Prior
-
check_prior() - Check if Prior is Informative
-
simulate_correlation()simulate_ttest()simulate_difference() - Data Simulation
-
simulate_prior() - Returns Priors of a Model as Empirical Distributions
-
simulate_simpson() - Simpson's paradox dataset simulation
-
unupdate() - Un-update Bayesian models to their prior-to-data state
-
effective_sample() - Effective Sample Size (ESS)
-
mcse() - Monte-Carlo Standard Error (MCSE)
-
estimate_density() - Density Estimation
-
density_at() - Density Probability at a Given Value
-
area_under_curve()auc() - Area under the Curve (AUC)
-
overlap() - Overlap Coefficient
-
distribution()distribution_custom()distribution_beta()distribution_binomial()distribution_binom()distribution_cauchy()distribution_chisquared()distribution_chisq()distribution_gamma()distribution_mixture_normal()distribution_normal()distribution_gaussian()distribution_nbinom()distribution_poisson()distribution_student()distribution_t()distribution_student_t()distribution_tweedie()distribution_uniform() - Empirical Distributions
-
display(<describe_posterior>)print(<describe_posterior>)print_html(<describe_posterior>)print_md(<describe_posterior>) - Print tables in different output formats
-
mediation() - Summary of Bayesian multivariate-response mediation-models
-
convert_bayesian_as_frequentist()bayesian_as_frequentist() - Convert (refit) a Bayesian model to frequentist
-
contr.equalprior()contr.equalprior_pairs()contr.equalprior_deviations() - Contrast Matrices for Equal Marginal Priors in Bayesian Estimation
-
as.numeric(<map_estimate>)as.numeric(<p_direction>)as.numeric(<p_map>)as.numeric(<p_significance>) - Convert to Numeric
-
as.data.frame(<density>) - Coerce to a Data Frame
-
sexit_thresholds() - Find Effect Size Thresholds
-
reshape_iterations()reshape_draws() - Reshape estimations with multiple iterations (draws) to long format
-
diagnostic_draws() - Diagnostic values for each iteration
-
model_to_priors() - Convert model's posteriors to priors (EXPERIMENTAL)
-
disgust - Moral Disgust Judgment