Generate a sequence of n-quantiles, i.e., a sample of size n
with a
near-perfect distribution.
Usage
distribution(type = "normal", ...)
distribution_custom(n, type = "norm", ..., random = FALSE)
distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)
distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)
distribution_binom(n, size = 1, prob = 0.5, random = FALSE, ...)
distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)
distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)
distribution_chisq(n, df, ncp = 0, random = FALSE, ...)
distribution_gamma(n, shape, scale = 1, random = FALSE, ...)
distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)
distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)
distribution_gaussian(n, mean = 0, sd = 1, random = FALSE, ...)
distribution_nbinom(n, size, prob, mu, phi, random = FALSE, ...)
distribution_poisson(n, lambda = 1, random = FALSE, ...)
distribution_student(n, df, ncp, random = FALSE, ...)
distribution_t(n, df, ncp, random = FALSE, ...)
distribution_student_t(n, df, ncp, random = FALSE, ...)
distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)
distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)
rnorm_perfect(n, mean = 0, sd = 1)
Arguments
- type
Can be any of the names from base R's Distributions, like
"cauchy"
,"pois"
or"beta"
.- ...
Arguments passed to or from other methods.
- n
the number of observations
- random
Generate near-perfect or random (simple wrappers for the base R
r*
functions) distributions.- shape1, shape2
non-negative parameters of the Beta distribution.
- ncp
non-centrality parameter.
- size
number of trials (zero or more).
- prob
probability of success on each trial.
- location, scale
location and scale parameters.
- df
degrees of freedom (non-negative, but can be non-integer).
- shape
Shape parameter.
- mean
vector of means.
- sd
vector of standard deviations.
- mu
the mean
- phi
Corresponding to
glmmTMB
's implementation of nbinom distribution, wheresize=mu/phi
.- lambda
vector of (non-negative) means.
- xi
For tweedie distributions, the value of
xi
such that the variance isvar(Y) = phi * mu^xi
.- power
Alias for
xi
.- min, max
lower and upper limits of the distribution. Must be finite.