This function attempts at automatically finding suitable "default" values for the Region Of Practical Equivalence (ROPE).

## Arguments

- x
A

`stanreg`

,`brmsfit`

or`BFBayesFactor`

object.- ...
Currently not used.

- verbose
Toggle warnings.

## Details

Kruschke (2018) suggests that the region of practical
equivalence could be set, by default, to a range from `-0.1`

to
`0.1`

of a standardized parameter (negligible effect size
according to Cohen, 1988).

For

**linear models (lm)**, this can be generalised to -0.1 * SD_{y}, 0.1 * SD_{y}.`\item For **logistic models**, the parameters expressed in log odds ratio can be converted to standardized difference through the formula \ifelse{html}{\out{π/√(3)}}{\eqn{\pi/\sqrt{3}}}, resulting in a range of `-0.18` to `0.18`. \item For other models with **binary outcome**, it is strongly recommended to manually specify the rope argument. Currently, the same default is applied that for logistic models. \item For models from **count data**, the residual variance is used. This is a rather experimental threshold and is probably often similar to `-0.1, 0.1`, but should be used with care! \item For **t-tests**, the standard deviation of the response is used, similarly to linear models (see above). \item For **correlations**, `-0.05, 0.05` is used, i.e., half the value of a negligible correlation as suggested by Cohen's (1988) rules of thumb. \item For all other models, `-0.1, 0.1` is used to determine the ROPE limits, but it is strongly advised to specify it manually.`

## References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304 .

## Examples

```
# \dontrun{
if (require("rstanarm")) {
model <- suppressWarnings(stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,
refresh = 0
))
rope_range(model)
model <- suppressWarnings(
stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)
)
rope_range(model)
}
#> [1] -0.1813799 0.1813799
if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
rope_range(model)
}
#> Compiling Stan program...
#> Start sampling
#>
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 1.3e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.033393 seconds (Warm-up)
#> Chain 1: 0.036619 seconds (Sampling)
#> Chain 1: 0.070012 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 8e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.03324 seconds (Warm-up)
#> Chain 2: 0.032757 seconds (Sampling)
#> Chain 2: 0.065997 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 9e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.033962 seconds (Warm-up)
#> Chain 3: 0.031519 seconds (Sampling)
#> Chain 3: 0.065481 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 7e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.033346 seconds (Warm-up)
#> Chain 4: 0.029713 seconds (Sampling)
#> Chain 4: 0.063059 seconds (Total)
#> Chain 4:
#> [1] -0.6026948 0.6026948
if (require("BayesFactor")) {
model <- ttestBF(mtcars[mtcars$vs == 1, "mpg"], mtcars[mtcars$vs == 0, "mpg"])
rope_range(model)
model <- lmBF(mpg ~ vs, data = mtcars)
rope_range(model)
}
#> [1] -0.6026948 0.6026948
# }
```