Skip to contents

This function attempts at automatically finding suitable "default" values for the Region Of Practical Equivalence (ROPE).

Usage

rope_range(x, ...)

# S3 method for default
rope_range(x, verbose = TRUE, ...)

Arguments

x

A stanreg, brmsfit or BFBayesFactor object.

...

Currently not used.

verbose

Toggle warnings.

Details

Kruschke (2018) suggests that the region of practical equivalence could be set, by default, to a range from -0.1 to 0.1 of a standardized parameter (negligible effect size according to Cohen, 1988).

  • For linear models (lm), this can be generalised to -0.1 * SDy, 0.1 * SDy.

    \item For **logistic models**, the parameters expressed in log odds
    ratio can be converted to standardized difference through the formula
    \ifelse{html}{\out{π/√(3)}}{\eqn{\pi/\sqrt{3}}}, resulting in a
    range of `-0.18` to `0.18`.
    
    \item For other models with **binary outcome**, it is strongly
    recommended to manually specify the rope argument. Currently, the same
    default is applied that for logistic models.
    
    \item For models from **count data**, the residual variance is used.
    This is a rather experimental threshold and is probably often similar to
    `-0.1, 0.1`, but should be used with care!
    
    \item For **t-tests**, the standard deviation of the response is
    used, similarly to linear models (see above).
    
    \item For **correlations**, `-0.05, 0.05` is used, i.e., half
    the value of a negligible correlation as suggested by Cohen's (1988)
    rules of thumb.
    
    \item For all other models, `-0.1, 0.1` is used to determine the
    ROPE limits, but it is strongly advised to specify it manually.

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304 .

Examples

# \dontrun{
if (require("rstanarm")) {
  model <- stan_glm(
    mpg ~ wt + gear,
    data = mtcars,
    chains = 2,
    iter = 200,
    refresh = 0
  )
  rope_range(model)

  model <- stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)
  rope_range(model)
}
#> Warning: The largest R-hat is 1.1, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: Markov chains did not converge! Do not analyze results!
#> [1] -0.1813799  0.1813799

if (require("brms")) {
  model <- brm(mpg ~ wt + cyl, data = mtcars)
  rope_range(model)
}
#> Compiling Stan program...
#> Start sampling
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 1.3e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.032416 seconds (Warm-up)
#> Chain 1:                0.028957 seconds (Sampling)
#> Chain 1:                0.061373 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 9e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.03292 seconds (Warm-up)
#> Chain 2:                0.031887 seconds (Sampling)
#> Chain 2:                0.064807 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 9e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.035085 seconds (Warm-up)
#> Chain 3:                0.030583 seconds (Sampling)
#> Chain 3:                0.065668 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 9e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.035542 seconds (Warm-up)
#> Chain 4:                0.026079 seconds (Sampling)
#> Chain 4:                0.061621 seconds (Total)
#> Chain 4: 
#> [1] -0.6026948  0.6026948

if (require("BayesFactor")) {
  model <- ttestBF(mtcars[mtcars$vs == 1, "mpg"], mtcars[mtcars$vs == 0, "mpg"])
  rope_range(model)

  model <- lmBF(mpg ~ vs, data = mtcars)
  rope_range(model)
}
#> [1] -0.6026948  0.6026948
# }