Compute Confidence/Credible/Compatibility Intervals (CI) or Support Intervals (SI) for Bayesian and frequentist models. The Documentation is accessible for:
Usage
ci(x, ...)
# S3 method for class 'numeric'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)
# S3 method for class 'data.frame'
ci(x, ci = 0.95, method = "ETI", BF = 1, rvar_col = NULL, verbose = TRUE, ...)
# S3 method for class 'brmsfit'
ci(
x,
ci = 0.95,
method = "ETI",
effects = "fixed",
component = "conditional",
parameters = NULL,
verbose = TRUE,
BF = 1,
...
)Arguments
- x
A
stanregorbrmsfitmodel, or a vector representing a posterior distribution.- ...
Currently not used.
- ci
Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to
0.95(95%).- method
- verbose
Toggle off warnings.
- BF
The amount of support required to be included in the support interval.
- rvar_col
A single character - the name of an
rvarcolumn in the data frame to be processed. See example inp_direction().- effects
Should variables for fixed effects (
"fixed"), random effects ("random") or both ("all") be returned? Only applies to mixed models. May be abbreviated.For models of from packages brms or rstanarm there are additional options:
"fixed"returns fixed effects."random_variance"return random effects parameters (variance and correlation components, e.g. those parameters that start withsd_orcor_)."grouplevel"returns random effects group level estimates, i.e. those parameters that start withr_."random"returns both"random_variance"and"grouplevel"."all"returns fixed effects and random effects variances."full"returns all parameters.
- component
Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, etc. See details in section Model Components. May be abbreviated. Note that the conditional component also refers to the count or mean component - names may differ, depending on the modeling package. There are three convenient shortcuts (not applicable to all model classes):
component = "all"returns all possible parameters.If
component = "location", location parameters such asconditional,zero_inflated,smooth_terms, orinstrumentsare returned (everything that are fixed or random effects - depending on theeffectsargument - but no auxiliary parameters).For
component = "distributional"(or"auxiliary"), components likesigma,dispersion,betaorprecision(and other auxiliary parameters) are returned.
- parameters
Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like
lp__orprior_) are filtered by default, so only parameters that typically appear in thesummary()are returned. Useparametersto select specific parameters for the output.
Value
A data frame with following columns:
ParameterThe model parameter(s), ifxis a model-object. Ifxis a vector, this column is missing.CIThe probability of the credible interval.CI_low,CI_highThe lower and upper credible interval limits for the parameters.
Note
When it comes to interpretation, we recommend thinking of the CI in terms of an "uncertainty" or "compatibility" interval, the latter being defined as "Given any value in the interval and the background assumptions, the data should not seem very surprising" (Gelman & Greenland 2019).
There is also a plot()-method implemented in the see-package.
Model components
Possible values for the component argument depend on the model class.
Following are valid options:
"all": returns all model components, applies to all models, but will only have an effect for models with more than just the conditional model component."conditional": only returns the conditional component, i.e. "fixed effects" terms from the model. Will only have an effect for models with more than just the conditional model component."smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may contain smooth terms)."zero_inflated"(or"zi"): returns the zero-inflation component."location": returns location parameters such asconditional,zero_inflated, orsmooth_terms(everything that are fixed or random effects - depending on theeffectsargument - but no auxiliary parameters)."distributional"(or"auxiliary"): components likesigma,dispersion,betaorprecision(and other auxiliary parameters) are returned.
For models of class brmsfit (package brms), even more options are
possible for the component argument, which are not all documented in detail
here. See also ?insight::find_parameters.
References
Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ 2019;l5381. 10.1136/bmj.l5381
Examples
library(bayestestR)
posterior <- rnorm(1000)
ci(posterior, method = "ETI")
#> 95% ETI: [-1.93, 1.97]
ci(posterior, method = "HDI")
#> 95% HDI: [-1.85, 2.04]
df <- data.frame(replicate(4, rnorm(100)))
ci(df, method = "ETI", ci = c(0.80, 0.89, 0.95))
#> Equal-Tailed Interval
#>
#> Parameter | 80% ETI | 89% ETI | 95% ETI
#> ---------------------------------------------------------
#> X1 | [-1.46, 1.27] | [-1.60, 1.62] | [-1.96, 1.96]
#> X2 | [-1.19, 1.34] | [-1.42, 1.48] | [-2.02, 1.84]
#> X3 | [-1.26, 1.18] | [-1.72, 1.51] | [-2.20, 1.66]
#> X4 | [-1.01, 1.61] | [-1.33, 1.73] | [-1.85, 2.22]
ci(df, method = "HDI", ci = c(0.80, 0.89, 0.95))
#> Highest Density Interval
#>
#> Parameter | 80% HDI | 89% HDI | 95% HDI
#> ---------------------------------------------------------
#> X1 | [-1.64, 1.02] | [-1.55, 1.73] | [-1.97, 1.80]
#> X2 | [-1.44, 0.99] | [-1.44, 1.49] | [-2.29, 1.72]
#> X3 | [-0.98, 1.35] | [-1.46, 1.56] | [-2.34, 1.52]
#> X4 | [-1.00, 1.62] | [-1.22, 1.89] | [-1.47, 2.39]
model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt,
data = mtcars, chains = 2, iter = 200, refresh = 0
))
ci(model, method = "ETI", ci = c(0.80, 0.89))
#> Equal-Tailed Interval
#>
#> Parameter | 80% ETI | 89% ETI | Effects | Component
#> ---------------------------------------------------------------------
#> (Intercept) | [34.88, 39.92] | [34.57, 40.72] | fixed | conditional
#> wt | [-6.12, -4.71] | [-6.44, -4.53] | fixed | conditional
ci(model, method = "HDI", ci = c(0.80, 0.89))
#> Highest Density Interval
#>
#> Parameter | 80% HDI | 89% HDI
#> ---------------------------------------------
#> (Intercept) | [34.55, 39.51] | [34.47, 40.19]
#> wt | [-6.15, -4.75] | [-6.14, -4.41]
bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
ci(bf, method = "ETI")
#> Equal-Tailed Interval
#>
#> Parameter | 95% ETI
#> -------------------------
#> Difference | [0.73, 1.08]
ci(bf, method = "HDI")
#> Highest Density Interval
#>
#> Parameter | 95% HDI
#> -------------------------
#> Difference | [0.74, 1.09]
model <- emmeans::emtrends(model, ~1, "wt", data = mtcars)
ci(model, method = "ETI")
#> Equal-Tailed Interval
#>
#> X1 | 95% ETI
#> ------------------------
#> overall | [-6.69, -4.42]
ci(model, method = "HDI")
#> Highest Density Interval
#>
#> X1 | 95% HDI
#> ------------------------
#> overall | [-6.53, -4.38]
