Perform a Test for Practical Equivalence for Bayesian and frequentist models.
Usage
equivalence_test(x, ...)
# Default S3 method
equivalence_test(x, ...)
# S3 method for class 'data.frame'
equivalence_test(
x,
range = "default",
ci = 0.95,
rvar_col = NULL,
verbose = TRUE,
...
)
# S3 method for class 'stanreg'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
parameters = NULL,
verbose = TRUE,
...
)
# S3 method for class 'brmsfit'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...
)
Arguments
- x
Vector representing a posterior distribution. Can also be a
stanreg
orbrmsfit
model.- ...
Currently not used.
- range
ROPE's lower and higher bounds. Should be
"default"
or depending on the number of outcome variables a vector or a list. For models with one response,range
can be:a vector of length two (e.g.,
c(-0.1, 0.1)
),a list of numeric vector of the same length as numbers of parameters (see 'Examples').
a list of named numeric vectors, where names correspond to parameter names. In this case, all parameters that have no matching name in
range
will be set to"default"
.
In multivariate models,
range
should be a list with another list (one for each response variable) of numeric vectors . Vector names should correspond to the name of the response variables. If"default"
and input is a vector, the range is set toc(-0.1, 0.1)
. If"default"
and input is a Bayesian model,rope_range()
is used. See 'Examples'.- ci
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
- rvar_col
A single character - the name of an
rvar
column in the data frame to be processed. See example inp_direction()
.- verbose
Toggle off warnings.
- effects
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
- component
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models.
- parameters
Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like
lp__
orprior_
) are filtered by default, so only parameters that typically appear in thesummary()
are returned. Useparameters
to select specific parameters for the output.
Value
A data frame with following columns:
Parameter
The model parameter(s), ifx
is a model-object. Ifx
is a vector, this column is missing.CI
The probability of the HDI.ROPE_low
,ROPE_high
The limits of the ROPE. These values are identical for all parameters.ROPE_Percentage
The proportion of the HDI that lies inside the ROPE.ROPE_Equivalence
The "test result", as character. Either "rejected", "accepted" or "undecided".HDI_low
,HDI_high
The lower and upper HDI limits for the parameters.
Details
Documentation is accessible for:
For Bayesian models, the Test for Practical Equivalence is based on the
"HDI+ROPE decision rule" (Kruschke, 2014, 2018) to check whether
parameter values should be accepted or rejected against an explicitly
formulated "null hypothesis" (i.e., a ROPE). In other words, it checks the
percentage of the 89%
HDI that is the null region (the ROPE). If
this percentage is sufficiently low, the null hypothesis is rejected. If this
percentage is sufficiently high, the null hypothesis is accepted.
Using the ROPE and the HDI, Kruschke (2018)
suggests using the percentage of the 95%
(or 89%
, considered more stable)
HDI that falls within the ROPE as a decision rule. If the HDI
is completely outside the ROPE, the "null hypothesis" for this parameter is
"rejected". If the ROPE completely covers the HDI, i.e., all most credible
values of a parameter are inside the region of practical equivalence, the
null hypothesis is accepted. Else, it’s undecided whether to accept or
reject the null hypothesis. If the full ROPE is used (i.e., 100%
of the
HDI), then the null hypothesis is rejected or accepted if the percentage
of the posterior within the ROPE is smaller than to 2.5%
or greater than
97.5%
. Desirable results are low proportions inside the ROPE (the closer
to zero the better).
Some attention is required for finding suitable values for the ROPE limits
(argument range
). See 'Details' in rope_range()
for further
information.
Multicollinearity: Non-independent covariates
When parameters show strong correlations, i.e. when covariates are not
independent, the joint parameter distributions may shift towards or
away from the ROPE. In such cases, the test for practical equivalence may
have inappropriate results. Collinearity invalidates ROPE and hypothesis
testing based on univariate marginals, as the probabilities are conditional
on independence. Most problematic are the results of the "undecided"
parameters, which may either move further towards "rejection" or away
from it (Kruschke 2014, 340f).
equivalence_test()
performs a simple check for pairwise correlations
between parameters, but as there can be collinearity between more than two variables,
a first step to check the assumptions of this hypothesis testing is to look
at different pair plots. An even more sophisticated check is the projection
predictive variable selection (Piironen and Vehtari 2017).
Note
There is a print()
-method with a digits
-argument to control
the amount of digits in the output, and there is a
plot()
-method
to visualize the results from the equivalence-test (for models only).
References
Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304
Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press
Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 27(3), 711–735. doi:10.1007/s11222-016-9649-y
Examples
library(bayestestR)
equivalence_test(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.10 0.10]
#>
#> H0 | inside ROPE | 95% HDI
#> --------------------------------------
#> Accepted | 100.00 % | [-0.02, 0.02]
#>
#>
equivalence_test(x = rnorm(1000, 0, 1), range = c(-0.1, 0.1))
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.10 0.10]
#>
#> H0 | inside ROPE | 95% HDI
#> ---------------------------------------
#> Undecided | 8.11 % | [-2.00, 1.97]
#>
#>
equivalence_test(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.10 0.10]
#>
#> H0 | inside ROPE | 95% HDI
#> -------------------------------------
#> Rejected | 0.00 % | [0.98, 1.02]
#>
#>
equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.10 0.10]
#>
#> H0 | inside ROPE | 50% HDI
#> -------------------------------------
#> Rejected | 0.00 % | [0.31, 1.64]
#>
#>
#> H0 | inside ROPE | 99% HDI
#> ---------------------------------------
#> Undecided | 5.05 % | [-1.58, 3.65]
#>
#>
# print more digits
test <- equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))
print(test, digits = 4)
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.1000 0.1000]
#>
#> H0 | inside ROPE | 50% HDI
#> -----------------------------------------
#> Rejected | 0.0000 % | [0.3115, 1.7148]
#>
#>
#> H0 | inside ROPE | 99% HDI
#> -------------------------------------------
#> Undecided | 4.9495 % | [-1.7070, 3.7015]
#>
#>
# \donttest{
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 2e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.045 seconds (Warm-up)
#> Chain 1: 0.046 seconds (Sampling)
#> Chain 1: 0.091 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.047 seconds (Warm-up)
#> Chain 2: 0.042 seconds (Sampling)
#> Chain 2: 0.089 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 8e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.045 seconds (Warm-up)
#> Chain 3: 0.045 seconds (Sampling)
#> Chain 3: 0.09 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 8e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.048 seconds (Warm-up)
#> Chain 4: 0.042 seconds (Sampling)
#> Chain 4: 0.09 seconds (Total)
#> Chain 4:
equivalence_test(model)
#> Possible multicollinearity between cyl and wt (r = 0.78). This might
#> lead to inappropriate results. See 'Details' in '?equivalence_test'.
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.60 0.60]
#>
#> Parameter | H0 | inside ROPE | 95% HDI
#> -----------------------------------------------------
#> (Intercept) | Rejected | 0.00 % | [36.21, 43.06]
#> wt | Rejected | 0.00 % | [-4.74, -1.62]
#> cyl | Rejected | 0.00 % | [-2.36, -0.70]
#>
#>
# multiple ROPE ranges - asymmetric, symmetric, default
equivalence_test(model, range = list(c(10, 40), c(-5, -4), "default"))
#> Possible multicollinearity between cyl and wt (r = 0.78). This might
#> lead to inappropriate results. See 'Details' in '?equivalence_test'.
#> # Test for Practical Equivalence
#>
#> Parameter | H0 | inside ROPE | 95% HDI | ROPE
#> -----------------------------------------------------------------------
#> (Intercept) | Undecided | 58.39 % | [36.21, 43.06] | [10.00, 40.00]
#> wt | Undecided | 12.05 % | [-4.74, -1.62] | [-5.00, -4.00]
#> cyl | Rejected | 0.00 % | [-2.36, -0.70] | [-0.10, 0.10]
#>
#>
# named ROPE ranges
equivalence_test(model, range = list(wt = c(-5, -4), `(Intercept)` = c(10, 40)))
#> Possible multicollinearity between cyl and wt (r = 0.78). This might
#> lead to inappropriate results. See 'Details' in '?equivalence_test'.
#> # Test for Practical Equivalence
#>
#> Parameter | H0 | inside ROPE | 95% HDI | ROPE
#> -----------------------------------------------------------------------
#> (Intercept) | Undecided | 58.39 % | [36.21, 43.06] | [10.00, 40.00]
#> wt | Undecided | 12.05 % | [-4.74, -1.62] | [-5.00, -4.00]
#> cyl | Rejected | 0.00 % | [-2.36, -0.70] | [-0.10, 0.10]
#>
#>
# plot result
test <- equivalence_test(model)
#> Possible multicollinearity between cyl and wt (r = 0.78). This might
#> lead to inappropriate results. See 'Details' in '?equivalence_test'.
plot(test)
#> Picking joint bandwidth of 0.0895
equivalence_test(emmeans::emtrends(model, ~1, "wt", data = mtcars))
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.10 0.10]
#>
#> X1 | H0 | inside ROPE | 95% HDI
#> -------------------------------------------------
#> overall | Rejected | 0.00 % | [-4.74, -1.62]
#>
#>
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
#> Compiling Stan program...
#> Start sampling
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 9e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
#> Chain 1: 0.019 seconds (Sampling)
#> Chain 1: 0.038 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 3e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.02 seconds (Warm-up)
#> Chain 2: 0.02 seconds (Sampling)
#> Chain 2: 0.04 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 3e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.018 seconds (Warm-up)
#> Chain 3: 0.014 seconds (Sampling)
#> Chain 3: 0.032 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 3e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.02 seconds (Warm-up)
#> Chain 4: 0.016 seconds (Sampling)
#> Chain 4: 0.036 seconds (Total)
#> Chain 4:
equivalence_test(model)
#> Possible multicollinearity between b_cyl and b_wt (r = 0.78). This might
#> lead to inappropriate results. See 'Details' in '?equivalence_test'.
#> # Test for Practical Equivalence
#>
#> ROPE: [-0.60 0.60]
#>
#> Parameter | H0 | inside ROPE | 95% HDI
#> ---------------------------------------------------
#> Intercept | Rejected | 0.00 % | [36.19, 43.16]
#> wt | Rejected | 0.00 % | [-4.71, -1.64]
#> cyl | Rejected | 0.00 % | [-2.36, -0.68]
#>
#>
bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
# equivalence_test(bf)
# }