Skip to contents

This function computes or extracts Bayes factors from fitted models.

The bf_* function is an alias of the main function.

Usage

bayesfactor_models(..., denominator = 1, verbose = TRUE)

bf_models(..., denominator = 1, verbose = TRUE)

# S3 method for default
bayesfactor_models(..., denominator = 1, verbose = TRUE)

# S3 method for bayesfactor_models
update(object, subset = NULL, reference = NULL, ...)

# S3 method for bayesfactor_models
as.matrix(x, ...)

Arguments

...

Fitted models (see details), all fit on the same data, or a single BFBayesFactor object (see 'Details'). Ignored in as.matrix(), update(). If the following named arguments are present, they are passed to insight::get_loglikelihood (see details):

  • estimator (defaults to "ML")

  • check_response (defaults to FALSE)

denominator

Either an integer indicating which of the models to use as the denominator, or a model to be used as a denominator. Ignored for BFBayesFactor.

verbose

Toggle off warnings.

object, x

A bayesfactor_models() object.

subset

Vector of model indices to keep or remove.

reference

Index of model to reference to, or "top" to reference to the best model, or "bottom" to reference to the worst model.

Value

A data frame containing the models' formulas (reconstructed fixed and random effects) and their log(BF)s (Use as.numeric() to extract the non-log Bayes factors; see examples), that prints nicely.

Details

If the passed models are supported by insight the DV of all models will be tested for equality (else this is assumed to be true), and the models' terms will be extracted (allowing for follow-up analysis with bayesfactor_inclusion).

  • For brmsfit or stanreg models, Bayes factors are computed using the bridgesampling package.

    • brmsfit models must have been fitted with save_pars = save_pars(all = TRUE).

    • stanreg models must have been fitted with a defined diagnostic_file.

  • For BFBayesFactor, bayesfactor_models() is mostly a wraparound BayesFactor::extractBF().

  • For all other model types, Bayes factors are computed using the BIC approximation. Note that BICs are extracted from using insight::get_loglikelihood, see documentation there for options for dealing with transformed responses and REML estimation.

In order to correctly and precisely estimate Bayes factors, a rule of thumb are the 4 P's: Proper Priors and Plentiful Posteriors. How many? The number of posterior samples needed for testing is substantially larger than for estimation (the default of 4000 samples may not be enough in many cases). A conservative rule of thumb is to obtain 10 times more samples than would be required for estimation (Gronau, Singmann, & Wagenmakers, 2017). If less than 40,000 samples are detected, bayesfactor_models() gives a warning.

See also the Bayes factors vignette.

Note

There is also a plot()-method implemented in the see-package.

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one convention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the null-model) (Wetzels et al. 2011).

References

  • Gronau, Q. F., Singmann, H., & Wagenmakers, E. J. (2017). Bridgesampling: An R package for estimating normalizing constants. arXiv preprint arXiv:1710.08162.

  • Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795.

  • Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of Mathematical Psychology, 72, 33–37.

  • Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic bulletin & review, 14(5), 779-804.

  • Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J. (2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. doi:10.1177/1745691611406923

Author

Mattan S. Ben-Shachar

Examples

# With lm objects:
# ----------------
lm1 <- lm(mpg ~ 1, data = mtcars)
lm2 <- lm(mpg ~ hp, data = mtcars)
lm3 <- lm(mpg ~ hp + drat, data = mtcars)
lm4 <- lm(mpg ~ hp * drat, data = mtcars)
(BFM <- bayesfactor_models(lm1, lm2, lm3, lm4, denominator = 1))
#> Bayes Factors for Model Comparison
#> 
#>       Model           BF
#> [lm2] hp        4.54e+05
#> [lm3] hp + drat 7.70e+07
#> [lm4] hp * drat 1.59e+07
#> 
#> * Against Denominator: [lm1] (Intercept only)
#> *   Bayes Factor Type: BIC approximation
# bayesfactor_models(lm2, lm3, lm4, denominator = lm1) # same result
# bayesfactor_models(lm1, lm2, lm3, lm4, denominator = lm1) # same result


update(BFM, reference = "bottom")
#> Bayes Factors for Model Comparison
#> 
#>       Model           BF
#> [lm2] hp        4.54e+05
#> [lm3] hp + drat 7.70e+07
#> [lm4] hp * drat 1.59e+07
#> 
#> * Against Denominator: [lm1] (Intercept only)
#> *   Bayes Factor Type: BIC approximation
as.matrix(BFM)
#> # Bayes Factors for Model Comparison 
#> 
#>            Numerator
#> Denominator
#> 
#>           |      [1] |      [2] |      [3] |      [4]
#> ----------------------------------------------------------------
#> [1] (Intercept only) |        1 | 4.54e+05 | 7.70e+07 | 1.59e+07
#> [2] hp               | 2.20e-06 |        1 |   169.72 |    35.09
#> [3] hp + drat        | 1.30e-08 |    0.006 |        1 |    0.207
#> [4] hp * drat        | 6.28e-08 |    0.028 |     4.84 |        1
as.numeric(BFM)
#> [1]        1.0   453874.3 77029881.3 15925712.4


lm2b <- lm(sqrt(mpg) ~ hp, data = mtcars)
# Set check_response = TRUE for transformed responses
bayesfactor_models(lm2b, denominator = lm2, check_response = TRUE)
#> Bayes Factors for Model Comparison
#> 
#>        Model   BF
#> [lm2b] hp    6.94
#> 
#> * Against Denominator: [lm2] hp
#> *   Bayes Factor Type: BIC approximation

# \dontrun{
# With lmerMod objects:
# ---------------------
if (require("lme4")) {
  lmer1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
  lmer2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
  lmer3 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width),
    data = iris
  )
  bayesfactor_models(lmer1, lmer2, lmer3,
    denominator = 1,
    estimator = "REML"
  )
}
#> Loading required package: lme4
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Bayes Factors for Model Comparison
#> 
#>         Model                                                          BF
#> [lmer2] Petal.Length + (Petal.Length | Species)                     0.058
#> [lmer3] Petal.Length + (Petal.Length | Species) + (1 | Petal.Width) 0.005
#> 
#> * Against Denominator: [lmer1] Petal.Length + (1 | Species)
#> *   Bayes Factor Type: BIC approximation

# rstanarm models
# ---------------------
# (note that a unique diagnostic_file MUST be specified in order to work)
if (require("rstanarm")) {
  stan_m0 <- stan_glm(Sepal.Length ~ 1,
    data = iris,
    family = gaussian(),
    diagnostic_file = file.path(tempdir(), "df0.csv")
  )
  stan_m1 <- stan_glm(Sepal.Length ~ Species,
    data = iris,
    family = gaussian(),
    diagnostic_file = file.path(tempdir(), "df1.csv")
  )
  stan_m2 <- stan_glm(Sepal.Length ~ Species + Petal.Length,
    data = iris,
    family = gaussian(),
    diagnostic_file = file.path(tempdir(), "df2.csv")
  )
  bayesfactor_models(stan_m1, stan_m2, denominator = stan_m0, verbose = FALSE)
}
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 2.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.02216 seconds (Warm-up)
#> Chain 1:                0.04812 seconds (Sampling)
#> Chain 1:                0.07028 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1.4e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.022762 seconds (Warm-up)
#> Chain 2:                0.048962 seconds (Sampling)
#> Chain 2:                0.071724 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 1.4e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.023293 seconds (Warm-up)
#> Chain 3:                0.047919 seconds (Sampling)
#> Chain 3:                0.071212 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1.6e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.023036 seconds (Warm-up)
#> Chain 4:                0.04858 seconds (Sampling)
#> Chain 4:                0.071616 seconds (Total)
#> Chain 4: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 2.4e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.038766 seconds (Warm-up)
#> Chain 1:                0.061998 seconds (Sampling)
#> Chain 1:                0.100764 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1.6e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.033788 seconds (Warm-up)
#> Chain 2:                0.063339 seconds (Sampling)
#> Chain 2:                0.097127 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 1.6e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.036189 seconds (Warm-up)
#> Chain 3:                0.061375 seconds (Sampling)
#> Chain 3:                0.097564 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1.7e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.037629 seconds (Warm-up)
#> Chain 4:                0.061223 seconds (Sampling)
#> Chain 4:                0.098852 seconds (Total)
#> Chain 4: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 2.5e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.25 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.113756 seconds (Warm-up)
#> Chain 1:                0.144619 seconds (Sampling)
#> Chain 1:                0.258375 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1.9e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.120631 seconds (Warm-up)
#> Chain 2:                0.148224 seconds (Sampling)
#> Chain 2:                0.268855 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 1.7e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.10448 seconds (Warm-up)
#> Chain 3:                0.140868 seconds (Sampling)
#> Chain 3:                0.245348 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1.6e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.100817 seconds (Warm-up)
#> Chain 4:                0.136175 seconds (Sampling)
#> Chain 4:                0.236992 seconds (Total)
#> Chain 4: 
#> Bayes Factors for Model Comparison
#> 
#>     Model                        BF
#> [1] Species                6.25e+27
#> [2] Species + Petal.Length 2.24e+53
#> 
#> * Against Denominator: [3] (Intercept only)
#> *   Bayes Factor Type: marginal likelihoods (bridgesampling)


# brms models
# --------------------
# (note the save_pars MUST be set to save_pars(all = TRUE) in order to work)
if (require("brms")) {
  brm1 <- brm(Sepal.Length ~ 1, data = iris, save_pars = save_pars(all = TRUE))
  brm2 <- brm(Sepal.Length ~ Species, data = iris, save_pars = save_pars(all = TRUE))
  brm3 <- brm(
    Sepal.Length ~ Species + Petal.Length,
    data = iris,
    save_pars = save_pars(all = TRUE)
  )

  bayesfactor_models(brm1, brm2, brm3, denominator = 1, verbose = FALSE)
}
#> Loading required package: brms
#> Loading 'brms' package (version 2.19.0). Useful instructions
#> can be found by typing help('brms'). A more detailed introduction
#> to the package is available through vignette('brms_overview').
#> 
#> Attaching package: ‘brms’
#> The following object is masked from ‘package:lme4’:
#> 
#>     ngrps
#> The following objects are masked from ‘package:rstanarm’:
#> 
#>     dirichlet, exponential, get_y, lasso, ngrps
#> The following object is masked from ‘package:stats’:
#> 
#>     ar
#> Compiling Stan program...
#> Start sampling
#> 
#> SAMPLING FOR MODEL '7ee50756b18bb11b98b60243b6abf4c0' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 3.4e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.34 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.049058 seconds (Warm-up)
#> Chain 1:                0.045419 seconds (Sampling)
#> Chain 1:                0.094477 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL '7ee50756b18bb11b98b60243b6abf4c0' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1.9e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.049527 seconds (Warm-up)
#> Chain 2:                0.040056 seconds (Sampling)
#> Chain 2:                0.089583 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL '7ee50756b18bb11b98b60243b6abf4c0' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 2e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.049473 seconds (Warm-up)
#> Chain 3:                0.049959 seconds (Sampling)
#> Chain 3:                0.099432 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL '7ee50756b18bb11b98b60243b6abf4c0' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1.7e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.050134 seconds (Warm-up)
#> Chain 4:                0.052227 seconds (Sampling)
#> Chain 4:                0.102361 seconds (Total)
#> Chain 4: 
#> Compiling Stan program...
#> Start sampling
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 1.5e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.023345 seconds (Warm-up)
#> Chain 1:                0.02397 seconds (Sampling)
#> Chain 1:                0.047315 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.022644 seconds (Warm-up)
#> Chain 2:                0.024277 seconds (Sampling)
#> Chain 2:                0.046921 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 1.2e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.023447 seconds (Warm-up)
#> Chain 3:                0.022759 seconds (Sampling)
#> Chain 3:                0.046206 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1.1e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.023933 seconds (Warm-up)
#> Chain 4:                0.023657 seconds (Sampling)
#> Chain 4:                0.04759 seconds (Total)
#> Chain 4: 
#> Compiling Stan program...
#> recompiling to avoid crashing R session
#> Start sampling
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 1.4e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.073815 seconds (Warm-up)
#> Chain 1:                0.070335 seconds (Sampling)
#> Chain 1:                0.14415 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.071592 seconds (Warm-up)
#> Chain 2:                0.073353 seconds (Sampling)
#> Chain 2:                0.144945 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 1e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.071241 seconds (Warm-up)
#> Chain 3:                0.078325 seconds (Sampling)
#> Chain 3:                0.149566 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL '7a5afdce5d4c61c643bdd2e18672208c' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 1e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.069759 seconds (Warm-up)
#> Chain 4:                0.079909 seconds (Sampling)
#> Chain 4:                0.149668 seconds (Total)
#> Chain 4: 
#> Bayes Factors for Model Comparison
#> 
#>     Model                        BF
#> [2] Species                5.93e+29
#> [3] Species + Petal.Length 7.58e+55
#> 
#> * Against Denominator: [1] (Intercept only)
#> *   Bayes Factor Type: marginal likelihoods (bridgesampling)


# BayesFactor
# ---------------------------
if (require("BayesFactor")) {
  data(puzzles)
  BF <- anovaBF(RT ~ shape * color + ID,
    data = puzzles,
    whichRandom = "ID", progress = FALSE
  )
  BF
  bayesfactor_models(BF) # basically the same
}
#> Bayes Factors for Model Comparison
#> 
#>     Model                               BF
#> [2] shape + ID                        3.08
#> [3] color + ID                        2.89
#> [4] shape + color + ID               11.65
#> [5] shape + color + shape:color + ID  4.44
#> 
#> * Against Denominator: [1] ID
#> *   Bayes Factor Type: JZS (BayesFactor)
# }