Compute indices relevant to describe and characterize the posterior distributions.
Usage
describe_posterior(posterior, ...)
# S3 method for class 'numeric'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
BF = 1,
verbose = TRUE,
...
)
# S3 method for class 'data.frame'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
BF = 1,
rvar_col = NULL,
verbose = TRUE,
...
)
# S3 method for class 'stanreg'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
parameters = NULL,
BF = 1,
verbose = TRUE,
...
)
# S3 method for class 'brmsfit'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all", "location",
"distributional", "auxiliary"),
parameters = NULL,
BF = 1,
priors = FALSE,
verbose = TRUE,
...
)
Arguments
- posterior
A vector, data frame or model of posterior draws. bayestestR supports a wide range of models (see
methods("describe_posterior")
) and not all of those are documented in the 'Usage' section, because methods for other classes mostly resemble the arguments of the.numeric
method.- ...
Additional arguments to be passed to or from methods.
- centrality
The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options:
"median"
,"mean"
,"MAP"
(seemap_estimate()
),"trimmed"
(which is justmean(x, trim = threshold)
),"mode"
or"all"
.- dispersion
Logical, if
TRUE
, computes indices of dispersion related to the estimate(s) (SD
andMAD
formean
andmedian
, respectively). Dispersion is not available for"MAP"
or"mode"
centrality indices.- ci
Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to
0.95
(95%
).- ci_method
The type of index used for Credible Interval. Can be
"ETI"
(default, seeeti()
),"HDI"
(seehdi()
),"BCI"
(seebci()
),"SPI"
(seespi()
), or"SI"
(seesi()
).- test
The indices of effect existence to compute. Character (vector) or list with one or more of these options:
"p_direction"
(or"pd"
),"rope"
,"p_map"
,"p_significance"
(or"ps"
),"p_rope"
,"equivalence_test"
(or"equitest"
),"bayesfactor"
(or"bf"
) or"all"
to compute all tests. For each "test", the corresponding bayestestR function is called (e.g.rope()
orp_direction()
) and its results included in the summary output.- rope_range
ROPE's lower and higher bounds. Should be a vector of two values (e.g.,
c(-0.1, 0.1)
),"default"
or a list of numeric vectors of the same length as numbers of parameters. If"default"
, the bounds are set tox +- 0.1*SD(response)
.- rope_ci
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
- keep_iterations
If
TRUE
, will keep all iterations (draws) of bootstrapped or Bayesian models. They will be added as additional columns namediter_1, iter_2, ...
. You can reshape them to a long format by runningreshape_iterations()
.- bf_prior
Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored.
- BF
The amount of support required to be included in the support interval.
- verbose
Toggle off warnings.
- rvar_col
A single character - the name of an
rvar
column in the data frame to be processed. See example inp_direction()
.- diagnostic
Diagnostic metrics to compute. Character (vector) or list with one or more of these options:
"ESS"
,"Rhat"
,"MCSE"
or"all"
.- priors
Add the prior used for each parameter.
- effects
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
- component
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models.
- parameters
Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like
lp__
orprior_
) are filtered by default, so only parameters that typically appear in thesummary()
are returned. Useparameters
to select specific parameters for the output.
Details
One or more components of point estimates (like posterior mean or median),
intervals and tests can be omitted from the summary output by setting the
related argument to NULL
. For example, test = NULL
and centrality = NULL
would only return the HDI (or CI).
References
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). Indices of Effect Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi:10.3389/fpsyg.2019.02767
Examples
library(bayestestR)
if (require("logspline")) {
x <- rnorm(1000)
describe_posterior(x, verbose = FALSE)
describe_posterior(x,
centrality = "all",
dispersion = TRUE,
test = "all",
verbose = FALSE
)
describe_posterior(x, ci = c(0.80, 0.90), verbose = FALSE)
df <- data.frame(replicate(4, rnorm(100)))
describe_posterior(df, verbose = FALSE)
describe_posterior(
df,
centrality = "all",
dispersion = TRUE,
test = "all",
verbose = FALSE
)
describe_posterior(df, ci = c(0.80, 0.90), verbose = FALSE)
df <- data.frame(replicate(4, rnorm(20)))
head(reshape_iterations(
describe_posterior(df, keep_iterations = TRUE, verbose = FALSE)
))
}
#> Summary of Posterior Distribution
#>
#> Parameter | Median | 95% CI | pd | ROPE | % in ROPE
#> -----------------------------------------------------------------------
#> X1 | -0.21 | [-1.70, 1.42] | 60.00% | [-0.10, 0.10] | 5.56%
#> X2 | -0.21 | [-2.38, 2.41] | 55.00% | [-0.10, 0.10] | 11.11%
#> X3 | 0.22 | [-1.96, 2.61] | 55.00% | [-0.10, 0.10] | 5.56%
#> X4 | -0.20 | [-1.58, 0.61] | 65.00% | [-0.10, 0.10] | 16.67%
#> X1 | -0.21 | [-1.70, 1.42] | 60.00% | [-0.10, 0.10] | 5.56%
#> X2 | -0.21 | [-2.38, 2.41] | 55.00% | [-0.10, 0.10] | 11.11%
#>
#> Parameter | iter_index | iter_group | iter_value
#> ------------------------------------------------
#> X1 | 1.00 | 1.00 | 0.51
#> X2 | 2.00 | 1.00 | -0.36
#> X3 | 3.00 | 1.00 | 1.32
#> X4 | 4.00 | 1.00 | 0.34
#> X1 | 1.00 | 2.00 | -0.14
#> X2 | 2.00 | 2.00 | -0.50
# \donttest{
# rstanarm models
# -----------------------------------------------
if (require("rstanarm") && require("emmeans")) {
model <- suppressWarnings(
stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(model, ci = c(0.80, 0.90))
describe_posterior(model, rope_range = list(c(-10, 5), c(-0.2, 0.2), "default"))
# emmeans estimates
# -----------------------------------------------
describe_posterior(emtrends(model, ~1, "wt"))
}
#> Warning: Bayes factors might not be precise.
#> For precise Bayes factors, sampling at least 40,000 posterior samples is
#> recommended.
#> Summary of Posterior Distribution
#>
#> X1 | Median | 95% CI | pd | ROPE | % in ROPE
#> --------------------------------------------------------------------
#> overall | -5.37 | [-6.57, -4.25] | 100% | [-0.10, 0.10] | 0%
# BayesFactor objects
# -----------------------------------------------
if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
describe_posterior(bf)
describe_posterior(bf, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(bf, ci = c(0.80, 0.90))
}
#> Summary of Posterior Distribution
#>
#> Parameter | Median | 80% CI | 90% CI | pd | ROPE
#> ------------------------------------------------------------------------
#> Difference | 0.97 | [0.84, 1.09] | [0.81, 1.12] | 100% | [-0.09, 0.09]
#>
#> Parameter | % in ROPE | BF | Prior
#> ------------------------------------------------------
#> Difference | 0% | 1.27e+15 | Cauchy (0 +- 0.71)
# }