
Package index
-
describe_nonlinear()estimate_smooth() - Describe the smooth term (for GAMs) or non-linear predictors
-
estimate_contrasts() - Estimate Marginal Contrasts
-
estimate_expectation()estimate_link()estimate_prediction()estimate_relation() - Model-based predictions
-
estimate_grouplevel()reshape_grouplevel() - Group-specific parameters of mixed models random effects
-
estimate_means() - Estimate Marginal Means (Model-based average at each factor level)
-
estimate_slopes() - Estimate Marginal Effects
-
plot(<estimate_predicted>)plot(<estimate_means>)tinyplot(<estimate_means>)visualisation_recipe(<estimate_predicted>)visualisation_recipe(<estimate_slopes>)visualisation_recipe(<estimate_grouplevel>) - Automated plotting for 'modelbased' objects
-
residualize_over_grid() - Compute partial residuals from a data grid
-
pool_contrasts() - Pool contrasts and comparisons from
estimate_contrasts() -
pool_predictions()pool_slopes() - Pool Predictions and Estimated Marginal Means
-
as.data.frame(<estimate_contrasts>) - Converting modelbased-objects into raw data frames
-
display(<estimate_contrasts>)format(<estimate_contrasts>)print(<estimate_contrasts>) - Printing modelbased-objects
-
describe_nonlinear()estimate_smooth() - Describe the smooth term (for GAMs) or non-linear predictors
-
get_emcontrasts()get_emmeans()get_emtrends()get_marginalcontrasts()get_marginalmeans()get_marginaltrends() - Consistent API for 'emmeans' and 'marginaleffects'
-
zero_crossings()find_inversions() - Find zero-crossings and inversion points
-
smoothing() - Smoothing a vector or a time series
-
modelbased-options - Global options from the modelbased package
-
coffee_data - Sample dataset from a course about analysis of factorial designs
-
puppy_love - More puppy therapy data
-
efc - Sample dataset from the EFC Survey
-
fish - Sample data set