Describe the smooth term (for GAMs) or non-linear predictors
Source:R/describe_nonlinear.R
describe_nonlinear.Rd
This function summarises the smooth term trend in terms of linear segments. Using the approximate derivative, it separates a non-linear vector into quasi-linear segments (in which the trend is either positive or negative). Each of this segment its characterized by its beginning, end, size (in proportion, relative to the total size) trend (the linear regression coefficient) and linearity (the R2 of the linear regression).
Usage
describe_nonlinear(data, ...)
# S3 method for class 'data.frame'
describe_nonlinear(data, x = NULL, y = NULL, ...)
estimate_smooth(data, ...)
Arguments
- data
The data containing the link, as for instance obtained by
estimate_relation()
.- ...
Other arguments to be passed to or from.
- x, y
The name of the responses variable (
y
) predicting variable (x
).
Examples
# Create data
data <- data.frame(x = rnorm(200))
data$y <- data$x^2 + rnorm(200, 0, 0.5)
model <<- lm(y ~ poly(x, 2), data = data)
link_data <- estimate_relation(model, length = 100)
describe_nonlinear(link_data, x = "x")
#> Start | End | Length | Change | Slope | R2
#> ----------------------------------------------
#> -2.61 | -0.06 | 0.47 | -6.57 | -2.58 | 0.02
#> -0.06 | 2.76 | 0.52 | 7.55 | 2.68 | 0.02