This vignette will present how to visualize the effects and
interactions using estimate_relation()
.
Note that the statistically correct name of
estimate_relation
is estimate_expectation
(which can be used as an alias), as it refers to expected predictions
(read more).
Simple regression
Linear relationship
library(modelbased)
model <- glm(Sepal.Length ~ Sepal.Width, data = iris)
visualization_data <- estimate_relation(model)
head(visualization_data)
More complex regressions
Non-linear relationships
Note that non-linear relationships can be also described by linear approximations using describe_nonlinear.
Polynomial
glm(Sepal.Length ~ poly(Sepal.Width, 2), data = iris) %>%
modelbased::estimate_relation(length = 50) %>%
ggplot(aes(x = Sepal.Width, y = Predicted)) +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high), alpha = 0.2) +
geom_line() +
see::theme_modern()
Additive Models
library(mgcv)
mgcv::gam(Sepal.Length ~ s(Sepal.Width), data = iris) %>%
modelbased::estimate_relation(length = 50) %>%
ggplot(aes(x = Sepal.Width, y = Predicted)) +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high), alpha = 0.2) +
geom_line() +
see::theme_modern()