Skip to contents

Comprehensive Information from Model Objects

model_info()
Access information from model objects

Find Information from Model Objects

Functions to access names or information from model objects. These functions have no get_*()-counterpart.

find_algorithm()
Find sampling algorithm and optimizers
find_formula() formula_ok()
Find model formula
find_interactions()
Find interaction terms from models
find_offset()
Find possible offset terms in a model
find_random_slopes()
Find names of random slopes
find_smooth()
Find smooth terms from a model object
find_terms()
Find all model terms
find_variables()
Find names of all variables

Get Data from Model Objects

Functions to get values or data from model objects. These functions have no find_*()-counterpart.

get_auxiliary() get_dispersion()
Get auxiliary parameters from models
get_data()
Get the data that was used to fit the model
get_datagrid()
Create a reference grid
get_df()
Extract degrees of freedom
get_intercept()
Get the value at the intercept
get_loglikelihood() loglikelihood() get_loglikelihood_adjustment()
Log-Likelihood and Log-Likelihood correction
get_modelmatrix()
Model Matrix
get_predicted()
Model predictions (robust) and their confidence intervals
get_predicted_ci()
Confidence intervals around predicted values
get_priors()
Get summary of priors used for a model
get_residuals()
Extract model residuals
get_sigma()
Get residual standard deviation from models
get_variance() get_variance_residual() get_variance_fixed() get_variance_random() get_variance_distribution() get_variance_dispersion() get_variance_intercept() get_variance_slope() get_correlation_slope_intercept() get_correlation_slopes()
Get variance components from random effects models
get_varcov()
Get variance-covariance matrix from models
get_deviance()
Model Deviance
get_family()
A robust alternative to stats::family

Find Information or Get Data from Model Objects

Functions to list model-specific objects or to extract values (or data) associated with model-specific objects.

find_parameters()
Find names of model parameters
get_parameters()
Get model parameters
find_predictors()
Find names of model predictors
get_predictors()
Get the data from model predictors
find_random()
Find names of random effects
get_random()
Get the data from random effects
find_response()
Find name of the response variable
get_response()
Get the values from the response variable
find_statistic()
Find statistic for model
get_statistic()
Get statistic associated with estimates
find_transformation()
Find possible transformation of model variables
get_transformation()
Return function of transformed response variables
find_weights()
Find names of model weights
get_weights()
Get the values from model weights

Access Further Information from Model Objects

Functions to access specific information from model objects.

get_call()
Get the model's function call
link_function()
Get link-function from model object
link_inverse()
Get link-inverse function from model object
model_name()
Name the model
n_grouplevels()
Count number of random effect levels in a mixed model
n_obs()
Get number of observations from a model
n_parameters()
Count number of parameters in a model
trim_ws() n_unique() safe_deparse() safe_deparse_symbol() has_single_value()
Small helper functions

Test Model Properties

Functions to test specific properties of model objects.

all_models_equal() all_models_same_class()
Checks if all objects are models of same class
has_intercept()
Checks if model has an intercept
is_converged()
Convergence test for mixed effects models
is_empty_object()
Check if object is empty
is_gam_model()
Checks if a model is a generalized additive model
is_mixed_model()
Checks if a model is a mixed effects model
is_model() is_regression_model()
Checks if an object is a regression model or statistical test object
is_model_supported() supported_models()
Checks if a regression model object is supported by the insight package
is_multivariate()
Checks if an object stems from a multivariate response model
is_nested_models()
Checks whether a list of models are nested models
is_nullmodel()
Checks if model is a null-model (intercept-only)

Value Formatting

Functions for formatting (summary) output for printing

color_if() colour_if()
Color-formatting for data columns based on condition
print_color() print_colour() color_text() colour_text() color_theme()
Coloured console output
format_bf()
Bayes Factor formatting
format_capitalize()
Capitalizes the first letter in a string
format_ci()
Confidence/Credible Interval (CI) Formatting
format_message() format_alert() format_warning() format_error()
Format messages and warnings
format_number()
Convert number to words
format_p()
p-values formatting
format_pd()
Probability of direction (pd) formatting
format_rope()
Percentage in ROPE formatting
format_string()
String Values Formatting
format_table()
Parameter table formatting
format_value() format_percent()
Numeric Values Formatting
text_remove_backticks()
Remove backticks from a string

Utilities

Functions that are not specifically related to access model information, but rather small utility functions (mostly for printing)

clean_names()
Get clean names of model terms
clean_parameters()
Get clean names of model parameters
display() print_md() print_html()
Generic export of data frames into formatted tables
download_model()
Download circus models
ellipsis_info()
Gather information about objects in ellipsis (dot dot dot)
apply_table_theme() export_table()
Data frame and Tables Pretty Formatting
null_model()
Compute intercept-only model for regression models
print_parameters()
Prepare summary statistics of model parameters for printing
standardize_column_order()
Standardize column order
standardize_names()
Standardize column names
is_empty_object()
Check if object is empty
object_has_names() object_has_rownames()
Check names and rownames
compact_character()
Remove empty strings from character
compact_list()
Remove empty elements from lists
check_if_installed()
Checking if needed package is installed
validate_argument()
Validate arguments against a given set of options
trim_ws() n_unique() safe_deparse() safe_deparse_symbol() has_single_value()
Small helper functions

Example Datasets

Used in examples or for testing

fish
Sample data set

Documentation of Specific Class Objects

find_parameters(<BGGM>) find_parameters(<brmsfit>)
Find names of model parameters from Bayesian models
find_parameters(<emmGrid>)
Find model parameters from estimated marginal means objects
find_parameters(<gamlss>) find_parameters(<gam>)
Find names of model parameters from generalized additive models
find_parameters(<betamfx>)
Find names of model parameters from marginal effects models
find_parameters(<glmmTMB>)
Find names of model parameters from mixed models
find_parameters(<zeroinfl>)
Find names of model parameters from zero-inflated models
find_parameters(<averaging>)
Find model parameters from models with special components
get_datagrid(<emmGrid>)
Extract a reference grid from objects created by emmeans and marginaleffects
get_parameters(<BGGM>) get_parameters(<BFBayesFactor>) get_parameters(<brmsfit>)
Get model parameters from Bayesian models
get_parameters(<emmGrid>)
Get model parameters from estimated marginal means objects
get_parameters(<gamm>)
Get model parameters from generalized additive models
get_parameters(<betamfx>)
Get model parameters from marginal effects models
get_parameters(<glmmTMB>)
Get model parameters from mixed models
get_parameters(<zeroinfl>)
Get model parameters from zero-inflated and hurdle models
get_parameters(<betareg>)
Get model parameters from models with special components
get_parameters(<htest>)
Get model parameters from htest-objects