
Package index
-
model_info() - Access information from model objects
Find Information from Model Objects
Functions to access names or information from model objects. These functions have no get_*()-counterpart.
-
find_algorithm() - Find sampling algorithm and optimizers
-
find_formula()formula_ok() - Find model formula
-
find_interactions() - Find interaction terms from models
-
find_offset() - Find possible offset terms in a model
-
find_random_slopes() - Find names of random slopes
-
find_smooth() - Find smooth terms from a model object
-
find_terms() - Find all model terms
-
find_variables() - Find names of all variables
Get Data from Model Objects
Functions to get values or data from model objects. These functions have no find_*()-counterpart.
-
get_data() - Get the data that was used to fit the model
-
get_datagrid() - Create a reference grid
-
get_df() - Extract degrees of freedom
-
get_intercept() - Get the value at the intercept
-
get_loglikelihood()loglikelihood()get_loglikelihood_adjustment() - Log-Likelihood and Log-Likelihood correction
-
get_modelmatrix() - Model Matrix
-
get_predicted() - Model predictions (robust) and their confidence intervals
-
get_predicted_ci() - Confidence intervals around predicted values
-
get_priors() - Get summary of priors used for a model
-
get_residuals() - Extract model residuals
-
get_sigma() - Get residual standard deviation from models
-
get_variance()get_variance_residual()get_variance_fixed()get_variance_random()get_variance_distribution()get_variance_dispersion()get_variance_intercept()get_variance_slope()get_correlation_slope_intercept()get_correlation_slopes() - Get variance components from random effects models
-
get_varcov() - Get variance-covariance matrix from models
-
get_deviance() - Model Deviance
-
get_family() - A robust alternative to stats::family
-
get_mixed_info() - Extract various information from mixed models
Find Information or Get Data from Model Objects
Functions to list model-specific objects or to extract values (or data) associated with model-specific objects.
-
find_auxiliary() - Find auxiliary (distributional) parameters from models
-
get_auxiliary()get_dispersion() - Get auxiliary parameters from models
-
find_parameters() - Find names of model parameters
-
get_parameters() - Get model parameters
-
find_predictors() - Find names of model predictors
-
get_predictors() - Get the data from model predictors
-
find_random() - Find names of random effects
-
get_random() - Get the data from random effects
-
find_response() - Find name of the response variable
-
get_response() - Get the values from the response variable
-
find_statistic() - Find statistic for model
-
get_statistic() - Get statistic associated with estimates
-
find_transformation() - Find possible transformation of model variables
-
get_transformation() - Return function of transformed response variables
-
find_weights() - Find names of model weights
-
get_weights() - Get the values from model weights
Access Further Information from Model Objects
Functions to access specific information from model objects.
-
get_call() - Get the model's function call
-
get_model() - Get a model objects that is saved as attribute
-
link_function() - Get link-function from model object
-
link_inverse() - Get link-inverse function from model object
-
model_name() - Name the model
-
n_grouplevels() - Count number of random effect levels in a mixed model
-
n_obs() - Get number of observations from a model
-
n_parameters() - Count number of parameters in a model
-
trim_ws()n_unique()safe_deparse()safe_deparse_symbol()has_single_value() - Small helper functions
-
all_models_equal()all_models_same_class() - Checks if all objects are models of same class
-
has_intercept() - Checks if model has an intercept
-
is_bayesian_model() - Checks if a model is a Bayesian model
-
is_converged() - Convergence test for mixed effects models
-
is_empty_object() - Check if object is empty
-
is_gam_model() - Checks if a model is a generalized additive model
-
is_mixed_model() - Checks if a model is a mixed effects model
-
is_model()is_regression_model() - Checks if an object is a regression model or statistical test object
-
is_model_supported()supported_models() - Checks if a regression model object is supported by the insight package
-
is_multivariate() - Checks if an object stems from a multivariate response model
-
is_nested_models() - Checks whether a list of models are nested models
-
is_nullmodel() - Checks if model is a null-model (intercept-only)
-
color_if()colour_if() - Color-formatting for data columns based on condition
-
print_color()print_colour()color_text()colour_text()color_theme() - Coloured console output
-
format_bf() - Bayes Factor formatting
-
format_capitalize() - Capitalizes the first letter in a string
-
format_ci() - Confidence/Credible Interval (CI) Formatting
-
format_message()format_alert()format_warning()format_error() - Format messages and warnings
-
format_number() - Convert number to words
-
format_p() - p-values formatting
-
format_pd() - Probability of direction (pd) formatting
-
format_rope() - Percentage in ROPE formatting
-
format_string() - String Values Formatting
-
format_table() - Parameter table formatting
-
format_value()format_percent() - Numeric Values Formatting
-
text_remove_backticks() - Remove backticks from a string
Utilities
Functions that are not specifically related to access model information, but rather small utility functions (mostly for printing)
-
clean_names() - Get clean names of model terms
-
clean_parameters() - Get clean names of model parameters
-
display()print_md()print_html() - Generic export of data frames into formatted tables
-
download_model() - Download circus models
-
ellipsis_info() - Gather information about objects in ellipsis (dot dot dot)
-
export_table() - Data frame and Tables Pretty Formatting
-
null_model() - Compute intercept-only model for regression models
-
print_parameters() - Prepare summary statistics of model parameters for printing
-
standardize_column_order() - Standardize column order
-
standardize_names() - Standardize column names
-
easystats_columns()broom_columns() - Easystats columns
-
is_empty_object() - Check if object is empty
-
object_has_names()object_has_rownames() - Check names and rownames
-
compact_character() - Remove empty strings from character
-
compact_list() - Remove empty elements from lists
-
check_if_installed() - Checking if needed package is installed
-
validate_argument() - Validate arguments against a given set of options
-
trim_ws()n_unique()safe_deparse()safe_deparse_symbol()has_single_value() - Small helper functions
-
efc_insight - Sample dataset from the EFC Survey
-
fish - Sample data set for count models
-
find_parameters(<BGGM>)find_parameters(<brmsfit>) - Find names of model parameters from Bayesian models
-
find_parameters(<emmGrid>) - Find model parameters from estimated marginal means objects
-
find_parameters(<gamlss>)find_parameters(<gam>) - Find names of model parameters from generalized additive models
-
find_parameters(<betamfx>) - Find names of model parameters from marginal effects models
-
find_parameters(<glmmTMB>) - Find names of model parameters from mixed models
-
find_parameters(<zeroinfl>) - Find names of model parameters from zero-inflated models
-
find_parameters(<averaging>) - Find model parameters from models with special components
-
get_datagrid(<emmGrid>) - Extract a reference grid from objects created by emmeans and marginaleffects
-
get_parameters(<BGGM>)get_parameters(<BFBayesFactor>)get_parameters(<brmsfit>) - Get model parameters from Bayesian models
-
get_parameters(<emmGrid>) - Get model parameters from estimated marginal means objects
-
get_parameters(<gamm>) - Get model parameters from generalized additive models
-
get_parameters(<betamfx>) - Get model parameters from marginal effects models
-
get_parameters(<glmmTMB>) - Get model parameters from mixed models
-
get_parameters(<zeroinfl>) - Get model parameters from zero-inflated and hurdle models
-
get_parameters(<betareg>) - Get model parameters from models with special components
-
get_parameters(<htest>) - Get model parameters from htest-objects