Package index
-
model_info()
- Access information from model objects
Find Information from Model Objects
Functions to access names or information from model objects. These functions have no get_*()
-counterpart.
-
find_algorithm()
- Find sampling algorithm and optimizers
-
find_formula()
formula_ok()
- Find model formula
-
find_interactions()
- Find interaction terms from models
-
find_offset()
- Find possible offset terms in a model
-
find_random_slopes()
- Find names of random slopes
-
find_smooth()
- Find smooth terms from a model object
-
find_terms()
- Find all model terms
-
find_variables()
- Find names of all variables
Get Data from Model Objects
Functions to get values or data from model objects. These functions have no find_*()
-counterpart.
-
get_auxiliary()
get_dispersion()
- Get auxiliary parameters from models
-
get_data()
- Get the data that was used to fit the model
-
get_datagrid()
- Create a reference grid
-
get_df()
- Extract degrees of freedom
-
get_intercept()
- Get the value at the intercept
-
get_loglikelihood()
loglikelihood()
get_loglikelihood_adjustment()
- Log-Likelihood and Log-Likelihood correction
-
get_modelmatrix()
- Model Matrix
-
get_predicted()
- Model predictions (robust) and their confidence intervals
-
get_predicted_ci()
- Confidence intervals around predicted values
-
get_priors()
- Get summary of priors used for a model
-
get_residuals()
- Extract model residuals
-
get_sigma()
- Get residual standard deviation from models
-
get_variance()
get_variance_residual()
get_variance_fixed()
get_variance_random()
get_variance_distribution()
get_variance_dispersion()
get_variance_intercept()
get_variance_slope()
get_correlation_slope_intercept()
get_correlation_slopes()
- Get variance components from random effects models
-
get_varcov()
- Get variance-covariance matrix from models
-
get_deviance()
- Model Deviance
-
get_family()
- A robust alternative to stats::family
Find Information or Get Data from Model Objects
Functions to list model-specific objects or to extract values (or data) associated with model-specific objects.
-
find_parameters()
- Find names of model parameters
-
get_parameters()
- Get model parameters
-
find_predictors()
- Find names of model predictors
-
get_predictors()
- Get the data from model predictors
-
find_random()
- Find names of random effects
-
get_random()
- Get the data from random effects
-
find_response()
- Find name of the response variable
-
get_response()
- Get the values from the response variable
-
find_statistic()
- Find statistic for model
-
get_statistic()
- Get statistic associated with estimates
-
find_transformation()
- Find possible transformation of model variables
-
get_transformation()
- Return function of transformed response variables
-
find_weights()
- Find names of model weights
-
get_weights()
- Get the values from model weights
Access Further Information from Model Objects
Functions to access specific information from model objects.
-
get_call()
- Get the model's function call
-
link_function()
- Get link-function from model object
-
link_inverse()
- Get link-inverse function from model object
-
model_name()
- Name the model
-
n_grouplevels()
- Count number of random effect levels in a mixed model
-
n_obs()
- Get number of observations from a model
-
n_parameters()
- Count number of parameters in a model
-
trim_ws()
n_unique()
safe_deparse()
safe_deparse_symbol()
has_single_value()
- Small helper functions
-
all_models_equal()
all_models_same_class()
- Checks if all objects are models of same class
-
has_intercept()
- Checks if model has an intercept
-
is_converged()
- Convergence test for mixed effects models
-
is_empty_object()
- Check if object is empty
-
is_gam_model()
- Checks if a model is a generalized additive model
-
is_mixed_model()
- Checks if a model is a mixed effects model
-
is_model()
is_regression_model()
- Checks if an object is a regression model or statistical test object
-
is_model_supported()
supported_models()
- Checks if a regression model object is supported by the insight package
-
is_multivariate()
- Checks if an object stems from a multivariate response model
-
is_nested_models()
- Checks whether a list of models are nested models
-
is_nullmodel()
- Checks if model is a null-model (intercept-only)
-
color_if()
colour_if()
- Color-formatting for data columns based on condition
-
print_color()
print_colour()
color_text()
colour_text()
color_theme()
- Coloured console output
-
format_bf()
- Bayes Factor formatting
-
format_capitalize()
- Capitalizes the first letter in a string
-
format_ci()
- Confidence/Credible Interval (CI) Formatting
-
format_message()
format_alert()
format_warning()
format_error()
- Format messages and warnings
-
format_number()
- Convert number to words
-
format_p()
- p-values formatting
-
format_pd()
- Probability of direction (pd) formatting
-
format_rope()
- Percentage in ROPE formatting
-
format_string()
- String Values Formatting
-
format_table()
- Parameter table formatting
-
format_value()
format_percent()
- Numeric Values Formatting
-
text_remove_backticks()
- Remove backticks from a string
Utilities
Functions that are not specifically related to access model information, but rather small utility functions (mostly for printing)
-
clean_names()
- Get clean names of model terms
-
clean_parameters()
- Get clean names of model parameters
-
display()
print_md()
print_html()
- Generic export of data frames into formatted tables
-
download_model()
- Download circus models
-
ellipsis_info()
- Gather information about objects in ellipsis (dot dot dot)
-
apply_table_theme()
export_table()
- Data frame and Tables Pretty Formatting
-
null_model()
- Compute intercept-only model for regression models
-
print_parameters()
- Prepare summary statistics of model parameters for printing
-
standardize_column_order()
- Standardize column order
-
standardize_names()
- Standardize column names
-
is_empty_object()
- Check if object is empty
-
object_has_names()
object_has_rownames()
- Check names and rownames
-
compact_character()
- Remove empty strings from character
-
compact_list()
- Remove empty elements from lists
-
check_if_installed()
- Checking if needed package is installed
-
validate_argument()
- Validate arguments against a given set of options
-
trim_ws()
n_unique()
safe_deparse()
safe_deparse_symbol()
has_single_value()
- Small helper functions
-
fish
- Sample data set
-
find_parameters(<BGGM>)
find_parameters(<brmsfit>)
- Find names of model parameters from Bayesian models
-
find_parameters(<emmGrid>)
- Find model parameters from estimated marginal means objects
-
find_parameters(<gamlss>)
find_parameters(<gam>)
- Find names of model parameters from generalized additive models
-
find_parameters(<betamfx>)
- Find names of model parameters from marginal effects models
-
find_parameters(<glmmTMB>)
- Find names of model parameters from mixed models
-
find_parameters(<zeroinfl>)
- Find names of model parameters from zero-inflated models
-
find_parameters(<averaging>)
- Find model parameters from models with special components
-
get_datagrid(<emmGrid>)
- Extract a reference grid from objects created by emmeans and marginaleffects
-
get_parameters(<BGGM>)
get_parameters(<BFBayesFactor>)
get_parameters(<brmsfit>)
- Get model parameters from Bayesian models
-
get_parameters(<emmGrid>)
- Get model parameters from estimated marginal means objects
-
get_parameters(<gamm>)
- Get model parameters from generalized additive models
-
get_parameters(<betamfx>)
- Get model parameters from marginal effects models
-
get_parameters(<glmmTMB>)
- Get model parameters from mixed models
-
get_parameters(<zeroinfl>)
- Get model parameters from zero-inflated and hurdle models
-
get_parameters(<betareg>)
- Get model parameters from models with special components
-
get_parameters(<htest>)
- Get model parameters from htest-objects