Returns the coefficients (or posterior samples for Bayesian models) from a model.
get_parameters(x, ...) # S3 method for betamfx get_parameters( x, component = c("all", "conditional", "precision", "marginal"), ... ) # S3 method for logitmfx get_parameters(x, component = c("all", "conditional", "marginal"), ...) # S3 method for emmGrid get_parameters(x, summary = FALSE, merge_parameters = FALSE, ...) # S3 method for averaging get_parameters(x, component = c("conditional", "full"), ...) # S3 method for betareg get_parameters(x, component = c("all", "conditional", "precision"), ...) # S3 method for DirichletRegModel get_parameters(x, component = c("all", "conditional", "precision"), ...) # S3 method for clm2 get_parameters(x, component = c("all", "conditional", "scale"), ...) # S3 method for coxme get_parameters(x, effects = c("fixed", "random"), ...) # S3 method for merMod get_parameters(x, effects = c("fixed", "random"), ...) # S3 method for mixed get_parameters(x, effects = c("fixed", "random"), ...) # S3 method for glmmTMB get_parameters( x, effects = c("fixed", "random"), component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), ... ) # S3 method for BBmm get_parameters(x, effects = c("fixed", "random"), ...) # S3 method for glimML get_parameters(x, effects = c("fixed", "random", "all"), ...) # S3 method for gam get_parameters(x, component = c("all", "conditional", "smooth_terms"), ...) # S3 method for zeroinfl get_parameters( x, component = c("all", "conditional", "zi", "zero_inflated"), ... ) # S3 method for zcpglm get_parameters( x, component = c("all", "conditional", "zi", "zero_inflated"), ... ) # S3 method for BGGM get_parameters( x, component = c("correlation", "conditional", "intercept", "all"), summary = FALSE, ... ) # S3 method for MCMCglmm get_parameters(x, effects = c("fixed", "random", "all"), summary = FALSE, ...) # S3 method for BFBayesFactor get_parameters( x, effects = c("all", "fixed", "random"), component = c("all", "extra"), iterations = 4000, progress = FALSE, verbose = TRUE, ... ) # S3 method for stanmvreg get_parameters( x, effects = c("fixed", "random", "all"), parameters = NULL, summary = FALSE, ... ) # S3 method for brmsfit get_parameters( x, effects = c("fixed", "random", "all"), component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "simplex", "sigma", "smooth_terms"), parameters = NULL, summary = FALSE, ... ) # S3 method for stanreg get_parameters( x, effects = c("fixed", "random", "all"), parameters = NULL, summary = FALSE, ... ) # S3 method for sim.merMod get_parameters( x, effects = c("fixed", "random", "all"), parameters = NULL, summary = FALSE, ... )
| x | A fitted model. |
|---|---|
| ... | Currently not used. |
| component | Should all parameters, parameters for the conditional model, the zero-inflated part of the model, the dispersion term, the instrumental variables or marginal effects be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variables (so called fixed-effects regressions), or models with marginal effects from mfx. May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model. |
| summary | Logical, indicates whether the full posterior samples
( |
| merge_parameters | Logical, if |
| effects | Should parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
| iterations | Number of posterior draws. |
| progress | Display progress. |
| verbose | Toggle messages and warnings. |
| parameters | Regular expression pattern that describes the parameters that should be returned. |
for non-Bayesian models and if effects = "fixed", a data frame with two columns: the parameter names and the related point estimates
if effects = "random", a list of data frames with the random effects (as returned by ranef()), unless the random effects have the same simplified structure as fixed effects (e.g. for models from MCMCglmm)
for Bayesian models, the posterior samples from the requested parameters as data frame
for Anova (aov()) with error term, a list of parameters for the conditional and the random effects parameters
for models with smooth terms or zero-inflation component, a data frame with three columns: the parameter names, the related point estimates and the component
In most cases when models either return different "effects" (fixed,
random) or "components" (conditional, zero-inflated, ...), the arguments
effects and component can be used.
get_parameters() is comparable to coef(), however, the coefficients
are returned as data frame (with columns for names and point estimates of
coefficients). For Bayesian models, the posterior samples of parameters are
returned.
Note that for BFBayesFactor models (from the BayesFactor
package), posteriors are only extracted from the first numerator model (i.e.,
model[1]). If you want to apply some function foo() to another
model stored in the BFBayesFactor object, index it directly, e.g.
foo(model[2]), foo(1/model[5]), etc.
See also weighted_posteriors.
#> Parameter Estimate #> 1 (Intercept) 38.7460642 #> 2 wt -3.2463673 #> 3 cyl -1.3641033 #> 4 vs 0.5241721