Returns information on the sampling or estimation algorithm as well as optimization functions, or for Bayesian model information on chains, iterations and warmup-samples.
Value
A list with elements depending on the model.
For frequentist models:
algorithm, for instance"OLS"or"ML"optimizer, name of optimizing function, only applies to specific models (likegam)
For frequentist mixed models:
algorithm, for instance"REML"or"ML"optimizer, name of optimizing function
For Bayesian models:
algorithm, the algorithmchains, number of chainsiterations, number of iterations per chainwarmup, number of warmups per chain
Examples
data(sleepstudy, package = "lme4")
m <- lme4::lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
find_algorithm(m)
#> $algorithm
#> [1] "REML"
#>
#> $optimizer
#> [1] "nloptwrap"
#>
# \donttest{
data(sleepstudy, package = "lme4")
m <- suppressWarnings(rstanarm::stan_lmer(
Reaction ~ Days + (1 | Subject),
data = sleepstudy,
refresh = 0
))
find_algorithm(m)
#> $algorithm
#> [1] "sampling"
#>
#> $chains
#> [1] 4
#>
#> $iterations
#> [1] 2000
#>
#> $warmup
#> [1] 1000
#>
# }
