Returns the residuals from regression models.
Usage
get_residuals(x, ...)
# Default S3 method
get_residuals(x, weighted = FALSE, verbose = TRUE, ...)
Arguments
- x
A model.
- ...
Passed down to
residuals()
, if possible.- weighted
Logical, if
TRUE
, returns weighted residuals.- verbose
Toggle warnings and messages.
Note
This function returns the default type of residuals, i.e. for the
response from linear models, the deviance residuals for models of class
glm
etc. To access different types, pass down the type
argument (see
'Examples').
This function is a robust alternative to residuals()
, as it works for
some special model objects that otherwise do not respond properly to calling
residuals()
.
Examples
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_residuals(m)
#> Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
#> -1.0559619 -0.2281383 -3.4822509 0.7514545
#> Hornet Sportabout Valiant Duster 360 Merc 240D
#> 2.0342659 -1.7531855 -1.9437064 0.9420887
#> Merc 230 Merc 280 Merc 280C Merc 450SE
#> -0.7877660 -0.7181129 -2.1181129 1.7794773
#> Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental
#> 1.5757124 -0.3619692 -0.3898093 0.1750587
#> Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
#> 4.2185956 5.7281850 1.8290601 6.0432610
#> Toyota Corona Dodge Challenger AMC Javelin Camaro Z28
#> -4.3115276 -0.9060247 -1.4819660 -2.0671872
#> Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa
#> 3.8490446 -0.2321023 -0.3424249 1.4979307
#> Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
#> -1.7422533 -1.8690068 -1.2437064 -3.3889219
m <- glm(vs ~ wt + cyl + mpg, data = mtcars, family = binomial())
get_residuals(m) # type = "deviance" by default
#> Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
#> -0.63287224 -0.81557679 0.24153475 1.23515879
#> Hornet Sportabout Valiant Duster 360 Merc 240D
#> -0.09537483 1.09436219 -0.09536895 0.08620842
#> Merc 230 Merc 280 Merc 280C Merc 450SE
#> 0.09512715 1.08274703 1.12137225 -0.17947784
#> Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental
#> -0.12620688 -0.12450351 -0.53935361 -0.64596525
#> Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
#> -0.67827839 0.20117929 0.40994430 0.28751494
#> Toyota Corona Dodge Challenger AMC Javelin Camaro Z28
#> 0.21446014 -0.09381913 -0.08439431 -0.12504287
#> Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa
#> -0.15299615 0.31935163 -2.59315645 0.45762007
#> Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
#> -0.06384435 -0.70853216 -0.09761985 0.15116709
get_residuals(m, type = "response")
#> Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
#> -0.181485065 -0.282930670 0.028748195 0.533645229
#> Hornet Sportabout Valiant Duster 360 Merc 240D
#> -0.004537852 0.450537255 -0.004537293 0.003709050
#> Merc 230 Merc 280 Merc 280C Merc 450SE
#> 0.004514367 0.443545885 0.466735567 -0.015977138
#> Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental
#> -0.007932459 -0.007720604 -0.135367880 -0.188308998
#> Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
#> -0.205490858 0.020033170 0.080593721 0.040489884
#> Toyota Corona Dodge Challenger AMC Javelin Camaro Z28
#> 0.022734170 -0.004391345 -0.003554867 -0.007787380
#> Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa
#> -0.011635687 0.049714423 -0.965342121 0.099412603
#> Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
#> -0.002035975 -0.221984564 -0.004753484 0.011360719