Returns the number of parameters (coefficients) of a model.
Usage
n_parameters(x, ...)
# Default S3 method
n_parameters(x, remove_nonestimable = FALSE, ...)
# S3 method for class 'merMod'
n_parameters(
x,
effects = c("fixed", "random"),
remove_nonestimable = FALSE,
...
)
# S3 method for class 'glmmTMB'
n_parameters(
x,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for class 'zeroinfl'
n_parameters(
x,
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for class 'gam'
n_parameters(
x,
component = c("all", "conditional", "smooth_terms"),
remove_nonestimable = FALSE,
...
)
# S3 method for class 'brmsfit'
n_parameters(x, effects = "all", component = "all", ...)
Arguments
- x
A statistical model.
- ...
Arguments passed to or from other methods.
- remove_nonestimable
Logical, if
TRUE
, removes (i.e. does not count) non-estimable parameters (which may occur for models with rank-deficient model matrix).- effects
Should variables for fixed effects (
"fixed"
), random effects ("random"
) or both ("all"
) be returned? Only applies to mixed models. May be abbreviated.- component
Should total number of parameters, number parameters for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated.
Note
This function returns the number of parameters for the fixed effects by
default, as returned by find_parameters(x, effects = "fixed")
. It does not
include all estimated model parameters, i.e. auxiliary parameters like
sigma or dispersion are not counted. To get the number of all estimated
parameters, use get_df(x, type = "model")
.