
Checks if a regression model object is supported by the insight package
Source:R/is_model_supported.R
is_model_supported.Rd
Small helper that checks if a model is a supported
(regression) model object. supported_models()
prints a list
of currently supported model classes.
Details
This function returns TRUE
if x
is a model object that works with the
package's functions. A list of supported models can also be found here:
https://github.com/easystats/insight.
Examples
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
is_model_supported(m)
#> [1] TRUE
is_model_supported(mtcars)
#> [1] FALSE
# to see all supported models
supported_models()
#> [1] "AKP" "Anova.mlm"
#> [3] "Arima" "BBmm"
#> [5] "BBreg" "BFBayesFactor"
#> [7] "BGGM" "DirichletRegModel"
#> [9] "Gam" "Glm"
#> [11] "HLfit" "LORgee"
#> [13] "MANOVA" "MCMCglmm"
#> [15] "MixMod" "PMCMR"
#> [17] "RM" "Rchoice"
#> [19] "Sarlm" "SemiParBIV"
#> [21] "aareg" "afex_aov"
#> [23] "anova.rms" "aov"
#> [25] "aovlist" "asym"
#> [27] "averaging" "bamlss"
#> [29] "bamlss.frame" "bayesQR"
#> [31] "bayesx" "bcplm"
#> [33] "betamfx" "betaor"
#> [35] "betareg" "bfsl"
#> [37] "bife" "bifeAPEs"
#> [39] "bigglm" "biglm"
#> [41] "blavaan" "blrm"
#> [43] "bracl" "brglm"
#> [45] "brmsfit" "brmultinom"
#> [47] "btergm" "censReg"
#> [49] "cgam" "cgamm"
#> [51] "cglm" "clm"
#> [53] "clm2" "clmm"
#> [55] "clmm2" "clogit"
#> [57] "coeftest" "complmrob"
#> [59] "confusionMatrix" "coxme"
#> [61] "coxph" "coxph.penal"
#> [63] "coxph_weightit" "coxr"
#> [65] "cpglm" "cpglmm"
#> [67] "crch" "crq"
#> [69] "crqs" "crr"
#> [71] "dep.effect" "draws"
#> [73] "drc" "eglm"
#> [75] "elm" "emmGrid"
#> [77] "epi.2by2" "ergm"
#> [79] "estimate_contrasts" "estimate_means"
#> [81] "estimate_slopes" "externVar"
#> [83] "externX" "fdm"
#> [85] "feglm" "feis"
#> [87] "felm" "fitdistr"
#> [89] "fixest" "flac"
#> [91] "flexsurvreg" "flic"
#> [93] "gam" "gamlss"
#> [95] "gamm" "gamm4"
#> [97] "garch" "gbm"
#> [99] "gee" "geeglm"
#> [101] "ggcomparisons" "glht"
#> [103] "glimML" "glm"
#> [105] "glmRob" "glm_weightit"
#> [107] "glmerMod" "glmgee"
#> [109] "glmm" "glmmPQL"
#> [111] "glmmTMB" "glmmadmb"
#> [113] "glmrob" "glmx"
#> [115] "gls" "gmnl"
#> [117] "hglm" "htest"
#> [119] "hurdle" "ivFixed"
#> [121] "iv_robust" "ivprobit"
#> [123] "ivreg" "joint"
#> [125] "lavaan" "lcmm"
#> [127] "lm" "lmRob"
#> [129] "lm_robust" "lme"
#> [131] "lmerMod" "lmerModLmerTest"
#> [133] "lmodel2" "lmrob"
#> [135] "logistf" "logitmfx"
#> [137] "logitor" "logitr"
#> [139] "lqm" "lqmm"
#> [141] "lrm" "manova"
#> [143] "marginaleffects" "marginaleffects.summary"
#> [145] "margins" "maxLik"
#> [147] "mblogit" "mclogit"
#> [149] "mcmc" "mcmc.list"
#> [151] "mcp1" "mcp12"
#> [153] "mcp2" "med1way"
#> [155] "mediate" "merMod"
#> [157] "merModList" "meta_bma"
#> [159] "meta_fixed" "meta_random"
#> [161] "metaplus" "mhurdle"
#> [163] "mipo" "mira"
#> [165] "mixed" "mixor"
#> [167] "mjoint" "mle"
#> [169] "mle2" "mlm"
#> [171] "mlogit" "mmclogit"
#> [173] "mmlogit" "mmrm"
#> [175] "mmrm_fit" "mmrm_tmb"
#> [177] "model_fit" "multinom"
#> [179] "multinom_weightit" "mvord"
#> [181] "negbinirr" "negbinmfx"
#> [183] "nestedLogit" "ols"
#> [185] "onesampb" "oohbchoice"
#> [187] "ordinal_weightit" "orm"
#> [189] "pgmm" "phyloglm"
#> [191] "phylolm" "plm"
#> [193] "poissonirr" "poissonmfx"
#> [195] "polr" "probitmfx"
#> [197] "psm" "ridgelm"
#> [199] "riskRegression" "rjags"
#> [201] "rlm" "rlmerMod"
#> [203] "rma" "rma.uni"
#> [205] "rms" "robmixglm"
#> [207] "robtab" "rq"
#> [209] "rqs" "rqss"
#> [211] "rvar" "scam"
#> [213] "sdmTMB" "selection"
#> [215] "sem" "semLm"
#> [217] "semLme" "seqanova.svyglm"
#> [219] "serp" "slm"
#> [221] "speedglm" "speedlm"
#> [223] "stanfit" "stanmvreg"
#> [225] "stanreg" "summary.lm"
#> [227] "survfit" "survreg"
#> [229] "svy2lme" "svy_vglm"
#> [231] "svychisq" "svyglm"
#> [233] "svyolr" "systemfit"
#> [235] "t1way" "tobit"
#> [237] "trimcibt" "truncreg"
#> [239] "vgam" "vglm"
#> [241] "wbgee" "wblm"
#> [243] "wbm" "wmcpAKP"
#> [245] "yuen" "yuend"
#> [247] "zcpglm" "zeroinfl"
#> [249] "zerotrunc"