Retrieve information from model objects.
Details
model_info()
returns a list with information about the
model for many different model objects. Following information
is returned, where all values starting with is_
are logicals.
is_binomial
: family is binomial (but not negative binomial)is_bernoulli
: special case of binomial models: family is Bernoulliis_poisson
: family is poissonis_negbin
: family is negative binomialis_count
: model is a count model (i.e. family is either poisson or negative binomial)is_beta
: family is betais_betabinomial
: family is beta-binomialis_orderedbeta
: family is ordered betais_dirichlet
: family is dirichletis_exponential
: family is exponential (e.g. Gamma or Weibull)is_logit
: model has logit linkis_probit
: model has probit linkis_linear
: family is gaussianis_tweedie
: family is tweedieis_ordinal
: family is ordinal or cumulative linkis_cumulative
: family is ordinal or cumulative linkis_multinomial
: family is multinomial or categorical linkis_categorical
: family is categorical linkis_censored
: model is a censored model (has a censored response, including survival models)is_truncated
: model is a truncated model (has a truncated response)is_survival
: model is a survival modelis_zero_inflated
: model has zero-inflation componentis_hurdle
: model has zero-inflation component and is a hurdle-model (truncated family distribution)is_dispersion
: model has dispersion component (not only dispersion parameter)is_mixed
: model is a mixed effects model (with random effects)is_multivariate
: model is a multivariate response model (currently only works for brmsfit and vglm/vgam objects)is_trial
: model response contains additional information about the trialsis_bayesian
: model is a Bayesian modelis_gam
: model is a generalized additive modelis_anova
: model is an Anova objectis_ttest
: model is an an object of classhtest
, returned byt.test()
is_correlation
: model is an an object of classhtest
, returned bycor.test()
is_ranktest
: model is an an object of classhtest
, returned bycor.test()
(if Spearman's rank correlation),wilcox.text()
orkruskal.test()
.is_variancetest
: model is an an object of classhtest
, returned bybartlett.test()
,shapiro.test()
orcar::leveneTest()
.is_levenetest
: model is an an object of classanova
, returned bycar::leveneTest()
.is_onewaytest
: model is an an object of classhtest
, returned byoneway.test()
is_proptest
: model is an an object of classhtest
, returned byprop.test()
is_binomtest
: model is an an object of classhtest
, returned bybinom.test()
is_chi2test
: model is an an object of classhtest
, returned bychisq.test()
is_xtab
: model is an an object of classhtest
orBFBayesFactor
, and test-statistic stems from a contingency table (i.e.chisq.test()
orBayesFactor::contingencyTableBF()
).link_function
: the link-functionfamily
: name of the distributional family of the model. For some exceptions (like somehtest
objects), can also be the name of the test.n_obs
: number of observationsn_grouplevels
: for mixed models, returns names and numbers of random effect groups
Examples
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
dat <- data.frame(ldose, sex, SF, stringsAsFactors = FALSE)
m <- glm(SF ~ sex * ldose, family = binomial)
# logistic regression
model_info(m)
#> $is_binomial
#> [1] TRUE
#>
#> $is_bernoulli
#> [1] FALSE
#>
#> $is_count
#> [1] FALSE
#>
#> $is_poisson
#> [1] FALSE
#>
#> $is_negbin
#> [1] FALSE
#>
#> $is_beta
#> [1] FALSE
#>
#> $is_betabinomial
#> [1] FALSE
#>
#> $is_orderedbeta
#> [1] FALSE
#>
#> $is_dirichlet
#> [1] FALSE
#>
#> $is_exponential
#> [1] FALSE
#>
#> $is_logit
#> [1] TRUE
#>
#> $is_probit
#> [1] FALSE
#>
#> $is_censored
#> [1] FALSE
#>
#> $is_truncated
#> [1] FALSE
#>
#> $is_survival
#> [1] FALSE
#>
#> $is_linear
#> [1] FALSE
#>
#> $is_tweedie
#> [1] FALSE
#>
#> $is_zeroinf
#> [1] FALSE
#>
#> $is_zero_inflated
#> [1] FALSE
#>
#> $is_dispersion
#> [1] FALSE
#>
#> $is_hurdle
#> [1] FALSE
#>
#> $is_ordinal
#> [1] FALSE
#>
#> $is_cumulative
#> [1] FALSE
#>
#> $is_multinomial
#> [1] FALSE
#>
#> $is_categorical
#> [1] FALSE
#>
#> $is_mixed
#> [1] FALSE
#>
#> $is_multivariate
#> [1] FALSE
#>
#> $is_trial
#> [1] FALSE
#>
#> $is_bayesian
#> [1] FALSE
#>
#> $is_gam
#> [1] FALSE
#>
#> $is_anova
#> [1] FALSE
#>
#> $is_timeseries
#> [1] FALSE
#>
#> $is_ttest
#> [1] FALSE
#>
#> $is_correlation
#> [1] FALSE
#>
#> $is_onewaytest
#> [1] FALSE
#>
#> $is_chi2test
#> [1] FALSE
#>
#> $is_ranktest
#> [1] FALSE
#>
#> $is_levenetest
#> [1] FALSE
#>
#> $is_variancetest
#> [1] FALSE
#>
#> $is_xtab
#> [1] FALSE
#>
#> $is_proptest
#> [1] FALSE
#>
#> $is_binomtest
#> [1] FALSE
#>
#> $is_ftest
#> [1] FALSE
#>
#> $is_meta
#> [1] FALSE
#>
#> $link_function
#> [1] "logit"
#>
#> $family
#> [1] "binomial"
#>
#> $n_obs
#> [1] 12
#>
#> $n_grouplevels
#> NULL
#>
# t-test
m <- t.test(1:10, y = c(7:20))
model_info(m)
#> $is_binomial
#> [1] FALSE
#>
#> $is_bernoulli
#> [1] FALSE
#>
#> $is_count
#> [1] FALSE
#>
#> $is_poisson
#> [1] FALSE
#>
#> $is_negbin
#> [1] FALSE
#>
#> $is_beta
#> [1] FALSE
#>
#> $is_betabinomial
#> [1] FALSE
#>
#> $is_orderedbeta
#> [1] FALSE
#>
#> $is_dirichlet
#> [1] FALSE
#>
#> $is_exponential
#> [1] FALSE
#>
#> $is_logit
#> [1] FALSE
#>
#> $is_probit
#> [1] FALSE
#>
#> $is_censored
#> [1] FALSE
#>
#> $is_truncated
#> [1] FALSE
#>
#> $is_survival
#> [1] FALSE
#>
#> $is_linear
#> [1] TRUE
#>
#> $is_tweedie
#> [1] FALSE
#>
#> $is_zeroinf
#> [1] FALSE
#>
#> $is_zero_inflated
#> [1] FALSE
#>
#> $is_dispersion
#> [1] FALSE
#>
#> $is_hurdle
#> [1] FALSE
#>
#> $is_ordinal
#> [1] FALSE
#>
#> $is_cumulative
#> [1] FALSE
#>
#> $is_multinomial
#> [1] FALSE
#>
#> $is_categorical
#> [1] FALSE
#>
#> $is_mixed
#> [1] FALSE
#>
#> $is_multivariate
#> [1] FALSE
#>
#> $is_trial
#> [1] FALSE
#>
#> $is_bayesian
#> [1] FALSE
#>
#> $is_gam
#> [1] FALSE
#>
#> $is_anova
#> [1] FALSE
#>
#> $is_timeseries
#> [1] FALSE
#>
#> $is_ttest
#> [1] TRUE
#>
#> $is_correlation
#> [1] FALSE
#>
#> $is_onewaytest
#> [1] FALSE
#>
#> $is_chi2test
#> [1] FALSE
#>
#> $is_ranktest
#> [1] FALSE
#>
#> $is_levenetest
#> [1] FALSE
#>
#> $is_variancetest
#> [1] FALSE
#>
#> $is_xtab
#> [1] FALSE
#>
#> $is_proptest
#> [1] FALSE
#>
#> $is_binomtest
#> [1] FALSE
#>
#> $is_ftest
#> [1] FALSE
#>
#> $is_meta
#> [1] FALSE
#>
#> $link_function
#> [1] "identity"
#>
#> $family
#> [1] "gaussian"
#>
#> $n_obs
#> NULL
#>
#> $n_grouplevels
#> NULL
#>