
Package index
-
data_to_long()reshape_longer() - Reshape (pivot) data from wide to long
-
data_to_wide()reshape_wider() - Reshape (pivot) data from long to wide
-
data_extract() - Extract one or more columns or elements from an object
-
data_match()data_filter() - Return filtered or sliced data frame, or row indices
-
data_select()extract_column_names()find_columns() - Find or get columns in a data frame based on search patterns
-
data_relocate()data_reorder()data_remove() - Relocate (reorder) columns of a data frame
-
data_arrange() - Arrange rows by column values
-
data_merge()data_join() - Merge (join) two data frames, or a list of data frames
-
data_partition() - Partition data
-
data_rotate()data_transpose() - Rotate a data frame
-
data_group()data_ungroup() - Create a grouped data frame
-
data_replicate() - Expand (i.e. replicate rows) a data frame
-
data_duplicated() - Extract all duplicates
-
data_unique() - Keep only one row from all with duplicated IDs
-
data_modify() - Create new variables in a data frame
-
data_separate() - Separate single variable into multiple variables
-
data_unite() - Unite ("merge") multiple variables
-
categorize() - Recode (or "cut" / "bin") data into groups of values.
-
recode_into() - Recode values from one or more variables into a new variable
-
recode_values() - Recode old values of variables into new values
-
adjust()data_adjust() - Adjust data for the effect of other variable(s)
-
ranktransform() - (Signed) rank transformation
-
rescale_weights() - Rescale design weights for multilevel analysis
-
winsorize() - Winsorize data
-
slide() - Shift numeric value range
-
standardize()standardise()unstandardize()unstandardise() - Standardization (Z-scoring)
-
standardize(<default>) - Re-fit a model with standardized data
-
reverse()reverse_scale() - Reverse-Score Variables
-
rescale()change_scale() - Rescale Variables to a New Range
-
normalize()unnormalize() - Normalize numeric variable to 0-1 range
-
makepredictcall(<dw_transformer>) - Utility Function for Safe Prediction with
datawizardtransformers
-
contr.deviation() - Deviation Contrast Matrix
-
as.prop.table()as.data.frame(<datawizard_tables>)as.table(<datawizard_table>) - Convert a crosstable to a frequency or a propensity table
-
data_codebook()print_html(<data_codebook>)display(<data_codebook>) - Generate a codebook of a data frame.
-
data_summary() - Summarize data
-
data_tabulate()print(<datawizard_table>)display(<datawizard_table>) - Create frequency and crosstables of variables
-
data_peek() - Peek at values and type of variables in a data frame
-
data_seek() - Find variables by their names, variable or value labels
-
means_by_group() - Summary of mean values by group
-
coef_var()distribution_coef_var() - Compute the coefficient of variation
-
describe_distribution() - Describe a distribution
-
distribution_mode() - Compute mode for a statistical distribution
-
skewness()kurtosis()print(<parameters_kurtosis>)print(<parameters_skewness>)summary(<parameters_skewness>)summary(<parameters_kurtosis>) - Compute Skewness and (Excess) Kurtosis
-
smoothness() - Quantify the smoothness of a vector
-
row_count() - Count specific values row-wise
-
row_means()row_sums() - Row means or sums (optionally with minimum amount of valid values)
-
weighted_mean()weighted_median()weighted_sd()weighted_mad() - Weighted Mean, Median, SD, and MAD
-
mean_sd()median_mad() - Summary Helpers
-
assign_labels() - Assign variable and value labels
-
labels_to_levels() - Convert value labels into factor levels
-
coerce_to_numeric() - Convert to Numeric (if possible)
-
to_numeric() - Convert data to numeric
-
to_factor() - Convert data to factors
-
replace_nan_inf() - Convert infinite or
NaNvalues intoNA
-
convert_na_to() - Replace missing values in a variable or a data frame.
-
convert_to_na() - Convert non-missing values in a variable into missing values.
-
data_read()data_write() - Read (import) data files from various sources
-
reshape_ci() - Reshape CI between wide/long formats
-
data_rename()data_rename_rows() - Rename columns and variable names
-
data_addprefix()data_addsuffix() - Add a prefix or suffix to column names
-
empty_columns()empty_rows()remove_empty_columns()remove_empty_rows()remove_empty() - Return or remove variables or observations that are completely missing
-
rownames_as_column()column_as_rownames()rowid_as_column() - Tools for working with row names or row ids
-
row_to_colnames()colnames_to_row() - Tools for working with column names
-
data_select()extract_column_names()find_columns() - Find or get columns in a data frame based on search patterns
-
data_restoretype() - Restore the type of columns according to a reference data frame
-
text_format()text_fullstop()text_lastchar()text_concatenate()text_paste()text_remove()text_wrap() - Convenient text formatting functionalities
-
visualisation_recipe() - Prepare objects for visualisation
-
efc - Sample dataset from the EFC Survey
-
nhanes_sample - Sample dataset from the National Health and Nutrition Examination Survey