Package index
-
data_to_long()
reshape_longer()
- Reshape (pivot) data from wide to long
-
data_to_wide()
reshape_wider()
- Reshape (pivot) data from long to wide
-
data_extract()
- Extract one or more columns or elements from an object
-
data_match()
data_filter()
- Return filtered or sliced data frame, or row indices
-
data_select()
extract_column_names()
find_columns()
- Find or get columns in a data frame based on search patterns
-
data_relocate()
data_reorder()
data_remove()
- Relocate (reorder) columns of a data frame
-
data_arrange()
- Arrange rows by column values
-
data_merge()
data_join()
- Merge (join) two data frames, or a list of data frames
-
data_partition()
- Partition data
-
data_rotate()
data_transpose()
- Rotate a data frame
-
data_group()
data_ungroup()
- Create a grouped data frame
-
data_replicate()
- Expand (i.e. replicate rows) a data frame
-
data_duplicated()
- Extract all duplicates
-
data_unique()
- Keep only one row from all with duplicated IDs
-
data_modify()
- Create new variables in a data frame
-
data_separate()
- Separate single variable into multiple variables
-
data_unite()
- Unite ("merge") multiple variables
-
categorize()
- Recode (or "cut" / "bin") data into groups of values.
-
recode_into()
- Recode values from one or more variables into a new variable
-
recode_values()
- Recode old values of variables into new values
-
adjust()
data_adjust()
- Adjust data for the effect of other variable(s)
-
ranktransform()
- (Signed) rank transformation
-
rescale_weights()
- Rescale design weights for multilevel analysis
-
winsorize()
- Winsorize data
-
slide()
- Shift numeric value range
-
standardize()
standardise()
unstandardize()
unstandardise()
- Standardization (Z-scoring)
-
standardize(<default>)
- Re-fit a model with standardized data
-
reverse()
reverse_scale()
- Reverse-Score Variables
-
rescale()
change_scale()
- Rescale Variables to a New Range
-
normalize()
unnormalize()
- Normalize numeric variable to 0-1 range
-
makepredictcall(<dw_transformer>)
- Utility Function for Safe Prediction with
datawizard
transformers
-
contr.deviation()
- Deviation Contrast Matrix
-
data_codebook()
print_html(<data_codebook>)
- Generate a codebook of a data frame.
-
data_summary()
- Summarize data
-
data_tabulate()
as.data.frame(<datawizard_tables>)
- Create frequency and crosstables of variables
-
data_peek()
- Peek at values and type of variables in a data frame
-
data_seek()
- Find variables by their names, variable or value labels
-
means_by_group()
- Summary of mean values by group
-
coef_var()
distribution_coef_var()
- Compute the coefficient of variation
-
describe_distribution()
- Describe a distribution
-
distribution_mode()
- Compute mode for a statistical distribution
-
skewness()
kurtosis()
print(<parameters_kurtosis>)
print(<parameters_skewness>)
summary(<parameters_skewness>)
summary(<parameters_kurtosis>)
- Compute Skewness and (Excess) Kurtosis
-
smoothness()
- Quantify the smoothness of a vector
-
row_count()
- Count specific values row-wise
-
row_means()
row_sums()
- Row means or sums (optionally with minimum amount of valid values)
-
weighted_mean()
weighted_median()
weighted_sd()
weighted_mad()
- Weighted Mean, Median, SD, and MAD
-
mean_sd()
median_mad()
- Summary Helpers
-
assign_labels()
- Assign variable and value labels
-
labels_to_levels()
- Convert value labels into factor levels
-
coerce_to_numeric()
- Convert to Numeric (if possible)
-
to_numeric()
- Convert data to numeric
-
to_factor()
- Convert data to factors
-
replace_nan_inf()
- Convert infinite or
NaN
values intoNA
-
convert_na_to()
- Replace missing values in a variable or a data frame.
-
convert_to_na()
- Convert non-missing values in a variable into missing values.
-
data_read()
data_write()
- Read (import) data files from various sources
-
reshape_ci()
- Reshape CI between wide/long formats
-
data_addprefix()
data_addsuffix()
data_rename()
data_rename_rows()
- Rename columns and variable names
-
empty_columns()
empty_rows()
remove_empty_columns()
remove_empty_rows()
remove_empty()
- Return or remove variables or observations that are completely missing
-
rownames_as_column()
column_as_rownames()
rowid_as_column()
- Tools for working with row names or row ids
-
row_to_colnames()
colnames_to_row()
- Tools for working with column names
-
data_select()
extract_column_names()
find_columns()
- Find or get columns in a data frame based on search patterns
-
data_restoretype()
- Restore the type of columns according to a reference data frame
-
text_format()
text_fullstop()
text_lastchar()
text_concatenate()
text_paste()
text_remove()
text_wrap()
- Convenient text formatting functionalities
-
visualisation_recipe()
- Prepare objects for visualisation
-
efc
- Sample dataset from the EFC Survey
-
nhanes_sample
- Sample dataset from the National Health and Nutrition Examination Survey