Skip to contents

This function can be used to adjust the data for the effect of other variables present in the dataset. It is based on an underlying fitting of regressions models, allowing for quite some flexibility, such as including factors as random effects in mixed models (multilevel partialization), continuous variables as smooth terms in general additive models (non-linear partialization) and/or fitting these models under a Bayesian framework. The values returned by this function are the residuals of the regression models. Note that a regular correlation between two "adjusted" variables is equivalent to the partial correlation between them.

Usage

adjust(
  data,
  effect = NULL,
  select = is.numeric,
  exclude = NULL,
  multilevel = FALSE,
  additive = FALSE,
  bayesian = FALSE,
  keep_intercept = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = FALSE
)

data_adjust(
  data,
  effect = NULL,
  select = is.numeric,
  exclude = NULL,
  multilevel = FALSE,
  additive = FALSE,
  bayesian = FALSE,
  keep_intercept = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = FALSE
)

Arguments

data

A data frame.

effect

Character vector of column names to be adjusted for (regressed out). If NULL (the default), all variables will be selected.

select

Variables that will be included when performing the required tasks. Can be either

  • a variable specified as a literal variable name (e.g., column_name),

  • a string with the variable name (e.g., "column_name"), a character vector of variable names (e.g., c("col1", "col2", "col3")), or a character vector of variable names including ranges specified via : (e.g., c("col1:col3", "col5")),

  • for some functions, like data_select() or data_rename(), select can be a named character vector. In this case, the names are used to rename the columns in the output data frame. See 'Details' in the related functions to see where this option applies.

  • a formula with variable names (e.g., ~column_1 + column_2),

  • a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),

  • a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),

  • one of the following select-helpers: starts_with(), ends_with(), contains(), a range using :, or regex(). starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal"). regex() can be used to define regular expression patterns.

  • a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),

  • ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(), -is.numeric or -(Sepal.Width:Petal.Length). Note: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. extract_column_names(iris, select = c("Species", "Test")) will just return "Species".

exclude

See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

multilevel

If TRUE, the factors are included as random factors. Else, if FALSE (default), they are included as fixed effects in the simple regression model.

additive

If TRUE, continuous variables as included as smooth terms in additive models. The goal is to regress-out potential non-linear effects.

bayesian

If TRUE, the models are fitted under the Bayesian framework using rstanarm.

keep_intercept

If FALSE (default), the intercept of the model is re-added. This avoids the centering around 0 that happens by default when regressing out another variable (see the examples below for a visual representation of this).

ignore_case

Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex

Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains() or select = regex(), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

verbose

Toggle warnings.

Value

A data frame comparable to data, with adjusted variables.

Examples

adjusted_all <- adjust(attitude)
head(adjusted_all)
#>        rating complaints privileges    learning     raises   critical
#> 1  -8.1102953  5.5583770 -15.848949 -2.75102306  0.5742664  15.605502
#> 2   1.6472337  0.0646564  -1.422592 -3.06207012 -1.5567655  -2.315781
#> 3   1.0605589 -7.5116953  11.174609  5.59808033  4.8603132   8.061801
#> 4  -0.2268416  3.8345277  -4.567441  0.03866933 -7.1185324  13.002574
#> 5   6.5462010 -1.2420122  -3.051098  0.87312095 -2.7131349   6.500353
#> 6 -10.9418499  5.2030745   2.664156 -1.24552098  4.1370346 -21.678382
#>      advance
#> 1  2.8684130
#> 2  5.3937097
#> 3 -6.4236221
#> 4 -0.3951046
#> 5  2.1988621
#> 6 -3.1912418
adjusted_one <- adjust(attitude, effect = "complaints", select = "rating")
head(adjusted_one)
#>        rating complaints privileges learning raises critical advance
#> 1  -9.8614202         51         30       39     61       92      45
#> 2   0.3286522         64         51       54     63       73      47
#> 3   3.8009933         70         68       69     76       86      48
#> 4  -0.9167380         63         45       47     54       84      35
#> 5   7.7641147         78         56       66     71       83      47
#> 6 -12.8798594         55         49       44     54       49      34
# \donttest{
adjust(attitude, effect = "complaints", select = "rating", bayesian = TRUE)
#>           rating complaints privileges learning raises critical advance
#> 1   -9.899974610         51         30       39     61       92      45
#> 2    0.291473662         64         51       54     63       73      47
#> 3    3.764449787         70         68       69     76       86      48
#> 4   -0.954022359         63         45       47     54       84      35
#> 5    7.728417954         78         56       66     71       83      47
#> 6  -12.917990526         55         49       44     54       49      34
#> 7   -6.972038276         67         42       56     66       68      35
#> 8   -0.008070108         75         50       55     70       66      41
#> 9   -4.289597962         82         72       67     71       83      31
#> 10   6.554985599         61         45       47     62       80      41
#> 11   9.591017432         53         53       58     58       67      34
#> 12   7.309489578         60         47       39     59       74      41
#> 13   7.800481620         62         57       42     55       63      25
#> 14  -9.044101941         83         83       45     59       77      35
#> 15   4.482921933         77         54       72     79       77      46
#> 16  -1.325629795         90         50       72     60       54      36
#> 17  -4.553109899         85         64       69     79       79      63
#> 18   5.309489578         60         65       75     55       80      60
#> 19  -2.235550213         70         46       57     75       85      46
#> 20  -8.181502464         58         68       54     64       78      52
#> 21   5.399569160         40         33       34     43       64      33
#> 22   3.554985599         61         52       62     66       80      41
#> 23 -11.217534296         66         52       50     63       80      37
#> 24  -2.336918902         37         42       58     50       57      49
#> 25   7.836513453         54         42       48     66       75      33
#> 26  -6.517078067         77         66       63     88       76      72
#> 27   6.991929892         75         58       74     80       78      49
#> 28  -9.426998484         57         44       45     51       83      38
#> 29   6.446890101         85         71       71     77       74      55
#> 30   5.710402038         82         39       59     64       78      39
adjust(attitude, effect = "complaints", select = "rating", additive = TRUE)
#>          rating complaints privileges learning raises critical advance
#> 1   -9.86142016         51         30       39     61       92      45
#> 2    0.32865220         64         51       54     63       73      47
#> 3    3.80099328         70         68       69     76       86      48
#> 4   -0.91673799         63         45       47     54       84      35
#> 5    7.76411473         78         56       66     71       83      47
#> 6  -12.87985944         55         49       44     54       49      34
#> 7   -6.93517726         67         42       56     66       68      35
#> 8    0.02794419         75         50       55     70       66      41
#> 9   -4.25432454         82         72       67     71       83      31
#> 10   6.59248165         61         45       47     62       80      41
#> 11   9.62936020         53         53       58     58       67      34
#> 12   7.34709147         60         47       39     59       74      41
#> 13   7.83787183         62         57       42     55       63      25
#> 14  -9.00893436         83         83       45     59       77      35
#> 15   4.51872455         77         54       72     79       77      46
#> 16  -1.29120309         90         50       72     60       54      36
#> 17  -4.51815400         85         64       69     79       79      63
#> 18   5.34709147         60         65       75     55       80      60
#> 19  -2.19900672         70         46       57     75       85      46
#> 20  -8.14368889         58         68       54     64       78      52
#> 21   5.43928784         40         33       34     43       64      33
#> 22   3.59248165         61         52       62     66       80      41
#> 23 -11.18056744         66         52       50     63       80      37
#> 24  -2.29688270         37         42       58     50       57      49
#> 25   7.87475038         54         42       48     66       75      33
#> 26  -6.48127545         77         66       63     88       76      72
#> 27   7.02794419         75         58       74     80       78      49
#> 28  -9.38907907         57         44       45     51       83      38
#> 29   6.48184600         85         71       71     77       74      55
#> 30   5.74567546         82         39       59     64       78      39
attitude$complaints_LMH <- cut(attitude$complaints, 3)
adjust(attitude, effect = "complaints_LMH", select = "rating", multilevel = TRUE)
#>         rating complaints privileges learning raises critical advance
#> 1   -9.9809282         51         30       39     61       92      45
#> 2    2.6250549         64         51       54     63       73      47
#> 3   10.6250549         70         68       69     76       86      48
#> 4    0.6250549         63         45       47     54       84      35
#> 5    5.6503521         78         56       66     71       83      47
#> 6  -17.3749451         55         49       44     54       49      34
#> 7   -2.3749451         67         42       56     66       68      35
#> 8   -4.3496479         75         50       55     70       66      41
#> 9   -3.3496479         82         72       67     71       83      31
#> 10   6.6250549         61         45       47     62       80      41
#> 11  11.0190718         53         53       58     58       67      34
#> 12   6.6250549         60         47       39     59       74      41
#> 13   8.6250549         62         57       42     55       63      25
#> 14  -7.3496479         83         83       45     59       77      35
#> 15   1.6503521         77         54       72     79       77      46
#> 16   5.6503521         90         50       72     60       54      36
#> 17  -1.3496479         85         64       69     79       79      63
#> 18   4.6250549         60         65       75     55       80      60
#> 19   4.6250549         70         46       57     75       85      46
#> 20 -10.3749451         58         68       54     64       78      52
#> 21  -2.9809282         40         33       34     43       64      33
#> 22   3.6250549         61         52       62     66       80      41
#> 23  -7.3749451         66         52       50     63       80      37
#> 24 -12.9809282         37         42       58     50       57      49
#> 25  10.0190718         54         42       48     66       75      33
#> 26  -9.3496479         77         66       63     88       76      72
#> 27   2.6503521         75         58       74     80       78      49
#> 28 -12.3749451         57         44       45     51       83      38
#> 29   9.6503521         85         71       71     77       74      55
#> 30   6.6503521         82         39       59     64       78      39
#>    complaints_LMH
#> 1     (36.9,54.7]
#> 2     (54.7,72.3]
#> 3     (54.7,72.3]
#> 4     (54.7,72.3]
#> 5     (72.3,90.1]
#> 6     (54.7,72.3]
#> 7     (54.7,72.3]
#> 8     (72.3,90.1]
#> 9     (72.3,90.1]
#> 10    (54.7,72.3]
#> 11    (36.9,54.7]
#> 12    (54.7,72.3]
#> 13    (54.7,72.3]
#> 14    (72.3,90.1]
#> 15    (72.3,90.1]
#> 16    (72.3,90.1]
#> 17    (72.3,90.1]
#> 18    (54.7,72.3]
#> 19    (54.7,72.3]
#> 20    (54.7,72.3]
#> 21    (36.9,54.7]
#> 22    (54.7,72.3]
#> 23    (54.7,72.3]
#> 24    (36.9,54.7]
#> 25    (36.9,54.7]
#> 26    (72.3,90.1]
#> 27    (72.3,90.1]
#> 28    (54.7,72.3]
#> 29    (72.3,90.1]
#> 30    (72.3,90.1]
# }

# Generate data
data <- bayestestR::simulate_correlation(n = 100, r = 0.7)
data$V2 <- (5 * data$V2) + 20 # Add intercept

# Adjust
adjusted <- adjust(data, effect = "V1", select = "V2")
adjusted_icpt <- adjust(data, effect = "V1", select = "V2", keep_intercept = TRUE)

# Visualize
plot(
  data$V1, data$V2,
  pch = 19, col = "blue",
  ylim = c(min(adjusted$V2), max(data$V2)),
  main = "Original (blue), adjusted (green), and adjusted - intercept kept (red) data"
)
abline(lm(V2 ~ V1, data = data), col = "blue")
points(adjusted$V1, adjusted$V2, pch = 19, col = "green")
abline(lm(V2 ~ V1, data = adjusted), col = "green")
points(adjusted_icpt$V1, adjusted_icpt$V2, pch = 19, col = "red")
abline(lm(V2 ~ V1, data = adjusted_icpt), col = "red")