This functions recodes old values into new values and can be used to to recode numeric or character vectors, or factors.
Usage
recode_values(x, ...)
# S3 method for class 'numeric'
recode_values(
x,
recode = NULL,
default = NULL,
preserve_na = TRUE,
verbose = TRUE,
...
)
# S3 method for class 'data.frame'
recode_values(
x,
select = NULL,
exclude = NULL,
recode = NULL,
default = NULL,
preserve_na = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
Arguments
- x
A data frame, numeric or character vector, or factor.
- ...
not used.
- recode
A list of named vectors, which indicate the recode pairs. The names of the list-elements (i.e. the left-hand side) represent the new values, while the values of the list-elements indicate the original (old) values that should be replaced. When recoding numeric vectors, element names have to be surrounded in backticks. For example,
recode=list(`0`=1)
would recode all1
into0
in a numeric vector. See also 'Examples' and 'Details'.- default
Defines the default value for all values that have no match in the recode-pairs. Note that, if
preserve_na=FALSE
, missing values (NA
) are also captured by thedefault
argument, and thus will also be recoded into the specified value. See 'Examples' and 'Details'.- preserve_na
Logical, if
TRUE
,NA
(missing values) are preserved. This overrides any other arguments, includingdefault
. Hence, ifpreserve_na=TRUE
,default
will no longer convertNA
into the specified default value.- verbose
Toggle warnings.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),for some functions, like
data_select()
ordata_rename()
,select
can be a named character vector. In this case, the names are used to rename the columns in the output data frame. See 'Details' in the related functions to see where this option applies.a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
, orregex()
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.regex()
can be used to define regular expression patterns.a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with()
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- append
Logical or string. If
TRUE
, recoded or converted variables get new column names and are appended (column bind) tox
, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function:"_r"
for recode functions,"_n"
forto_numeric()
,"_f"
forto_factor()
, or"_s"
forslide()
. Ifappend=FALSE
, original variables inx
will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains()
orselect = regex()
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
Details
This section describes the pattern of the recode
arguments, which also
provides some shortcuts, in particular when recoding numeric values.
Single values
Single values either need to be wrapped in backticks (in case of numeric values) or "as is" (for character or factor levels). Example:
recode=list(`0`=1,`1`=2)
would recode 1 into 0, and 2 into 1. For factors or character vectors, an example is:recode=list(x="a",y="b")
(recode "a" into "x" and "b" into "y").Multiple values
Multiple values that should be recoded into a new value can be separated with comma. Example:
recode=list(`1`=c(1,4),`2`=c(2,3))
would recode the values 1 and 4 into 1, and 2 and 3 into 2. It is also possible to define the old values as a character string, like:recode=list(`1`="1,4",`2`="2,3")
For factors or character vectors, an example is:recode=list(x=c("a","b"),y=c("c","d"))
.Value range
Numeric value ranges can be defined using the
:
. Example:recode=list(`1`=1:3,`2`=4:6)
would recode all values from 1 to 3 into 1, and 4 to 6 into 2.min
andmax
placeholder to use the minimum or maximum value of the (numeric) variable. Useful, e.g., when recoding ranges of values. Example:
recode=list(`1`="min:10",`2`="11:max")
.default
valuesThe
default
argument defines the default value for all values that have no match in the recode-pairs. For example,recode=list(`1`=c(1,2),`2`=c(3,4)), default=9
would recode values 1 and 2 into 1, 3 and 4 into 2, and all other values into 9. Ifpreserve_na
is set toFALSE
,NA
(missing values) will also be recoded into the specified default value.Reversing and rescaling
Note
You can use options(data_recode_pattern = "old=new")
to switch the
behaviour of the recode
-argument, i.e. recode-pairs are now following the
pattern old values = new values
, e.g. if getOption("data_recode_pattern")
is set to "old=new"
, then recode(`1`=0)
would recode all 1 into 0.
The default for recode(`1`=0)
is to recode all 0 into 1.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
See also
Add a prefix or suffix to column names:
data_addprefix()
,data_addsuffix()
Functions to reorder or remove columns:
data_reorder()
,data_relocate()
,data_remove()
Functions to reshape, pivot or rotate data frames:
data_to_long()
,data_to_wide()
,data_rotate()
Functions to recode data:
rescale()
,reverse()
,categorize()
,recode_values()
,slide()
Functions to standardize, normalize, rank-transform:
center()
,standardize()
,normalize()
,ranktransform()
,winsorize()
Split and merge data frames:
data_partition()
,data_merge()
Functions to find or select columns:
data_select()
,extract_column_names()
Functions to filter rows:
data_match()
,data_filter()
Examples
# numeric ----------
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")
#> x
#> 1 2 3 4 <NA>
#> 2 3 6 2 2
out <- recode_values(x, list(`0` = 1, `1` = 2:3, `2` = 4))
out
#> [1] 1 1 1 1 1 NA 2 0 1 1 NA 1 1 0 2
table(out, useNA = "always")
#> out
#> 0 1 2 <NA>
#> 2 9 2 2
# to recode NA values, set preserve_na to FALSE
out <- recode_values(
x,
list(`0` = 1, `1` = 2:3, `2` = 4, `9` = NA),
preserve_na = FALSE
)
out
#> [1] 1 1 1 1 1 9 2 0 1 1 9 1 1 0 2
table(out, useNA = "always")
#> out
#> 0 1 2 9 <NA>
#> 2 9 2 2 0
# preserve na ----------
out <- recode_values(x, list(`0` = 1, `1` = 2:3), default = 77)
out
#> [1] 1 1 1 1 1 NA 77 0 1 1 NA 1 1 0 77
table(out, useNA = "always")
#> out
#> 0 1 77 <NA>
#> 2 9 2 2
# recode na into default ----------
out <- recode_values(
x,
list(`0` = 1, `1` = 2:3),
default = 77,
preserve_na = FALSE
)
out
#> [1] 1 1 1 1 1 77 77 0 1 1 77 1 1 0 77
table(out, useNA = "always")
#> out
#> 0 1 77 <NA>
#> 2 9 4 0
# factors (character vectors are similar) ----------
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)
#> x
#> a b c
#> 2 7 6
out <- recode_values(x, list(x = "a", y = c("b", "c")))
out
#> [1] y y y y y y y y y x y y x y y
#> Levels: x y
table(out)
#> out
#> x y
#> 2 13
out <- recode_values(x, list(x = "a", y = "b", z = "c"))
out
#> [1] z z z y z y y y z x y y x y z
#> Levels: x y z
table(out)
#> out
#> x y z
#> 2 7 6
out <- recode_values(x, list(y = "b,c"), default = 77)
# same as
# recode_values(x, list(y = c("b", "c")), default = 77)
out
#> [1] y y y y y y y y y 77 y y 77 y y
#> Levels: 77 y
table(out)
#> out
#> 77 y
#> 2 13
# data frames ----------
set.seed(123)
d <- data.frame(
x = sample(c(1:4, NA), 12, TRUE),
y = as.factor(sample(c("a", "b", "c"), 12, TRUE)),
stringsAsFactors = FALSE
)
recode_values(
d,
recode = list(`0` = 1, `1` = 2:3, `2` = 4, x = "a", y = c("b", "c")),
append = TRUE
)
#> x y x_r y_r
#> 1 3 c 1 y
#> 2 3 a 1 x
#> 3 2 a 1 x
#> 4 2 a 1 x
#> 5 3 a 1 x
#> 6 NA c NA y
#> 7 4 b 2 y
#> 8 1 c 0 y
#> 9 2 b 1 y
#> 10 3 a 1 x
#> 11 NA b NA y
#> 12 3 c 1 y
# switch recode pattern to "old=new" ----------
options(data_recode_pattern = "old=new")
# numeric
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")
#> x
#> 1 2 3 4 <NA>
#> 2 3 6 2 2
out <- recode_values(x, list(`1` = 0, `2:3` = 1, `4` = 2))
table(out, useNA = "always")
#> out
#> 0 1 2 <NA>
#> 2 9 2 2
# factors (character vectors are similar)
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)
#> x
#> a b c
#> 2 7 6
out <- recode_values(x, list(a = "x", `b, c` = "y"))
table(out)
#> out
#> x y
#> 2 13
# reset options
options(data_recode_pattern = NULL)