Row means or sums (optionally with minimum amount of valid values)
Source:R/row_means.R
row_means.Rd
This function is similar to the SPSS MEAN.n
or SUM.n
function and computes row means or row sums from a data frame or matrix if at
least min_valid
values of a row are valid (and not NA
).
Usage
row_means(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE
)
row_sums(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE
)
Arguments
- data
A data frame with at least two columns, where row means or row sums are applied.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
orregex("")
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.or a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with("")
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- min_valid
Optional, a numeric value of length 1. May either be
a numeric value that indicates the amount of valid values per row to calculate the row mean or row sum;
or a value between
0
and1
, indicating a proportion of valid values per row to calculate the row mean or row sum (see 'Details').NULL
(default), in which all cases are considered.
If a row's sum of valid values is less than
min_valid
,NA
will be returned.- digits
Numeric value indicating the number of decimal places to be used for rounding mean values. Negative values are allowed (see 'Details'). By default,
digits = NULL
and no rounding is used.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains("")
orselect = regex("")
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.- remove_na
Logical, if
TRUE
(default), removes missing (NA
) values before calculating row means or row sums. Only applies ifmin_valid
is not specified.- verbose
Toggle warnings.
Value
A vector with row means (for row_means()
) or row sums (for
row_sums()
) for those rows with at least n
valid values.
Details
Rounding to a negative number of digits
means rounding to a power
of ten, for example row_means(df, 3, digits = -2)
rounds to the nearest
hundred. For min_valid
, if not NULL
, min_valid
must be a numeric value
from 0
to ncol(data)
. If a row in the data frame has at least min_valid
non-missing values, the row mean or row sum is returned. If min_valid
is a
non-integer value from 0 to 1, min_valid
is considered to indicate the
proportion of required non-missing values per row. E.g., if
min_valid = 0.75
, a row must have at least ncol(data) * min_valid
non-missing values for the row mean or row sum to be calculated. See
'Examples'.
Examples
dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)
)
# default, all means are shown, if no NA values are present
row_means(dat)
#> [1] NA 2.75 NA NA
# remove all NA before computing row means
row_means(dat, remove_na = TRUE)
#> [1] 1.500000 2.750000 7.000000 5.666667
# needs at least 4 non-missing values per row
row_means(dat, min_valid = 4) # 1 valid return value
#> [1] NA 2.75 NA NA
row_sums(dat, min_valid = 4) # 1 valid return value
#> [1] NA 11 NA NA
# needs at least 3 non-missing values per row
row_means(dat, min_valid = 3) # 2 valid return values
#> [1] NA 2.750000 NA 5.666667
# needs at least 2 non-missing values per row
row_means(dat, min_valid = 2)
#> [1] 1.500000 2.750000 NA 5.666667
# needs at least 1 non-missing value per row, for two selected variables
row_means(dat, select = c("c1", "c3"), min_valid = 1)
#> [1] 1 3 NA 4
# needs at least 50% of non-missing values per row
row_means(dat, min_valid = 0.5) # 3 valid return values
#> [1] 1.500000 2.750000 NA 5.666667
row_sums(dat, min_valid = 0.5)
#> [1] 3 11 NA 17
# needs at least 75% of non-missing values per row
row_means(dat, min_valid = 0.75) # 2 valid return values
#> [1] NA 2.750000 NA 5.666667