Skip to contents

Return a filtered (or sliced) data frame or row indices of a data frame that match a specific condition. data_filter() works like data_match(), but works with logical expressions or row indices of a data frame to specify matching conditions.

Usage

data_match(x, to, match = "and", return_indices = FALSE, drop_na = TRUE, ...)

data_filter(x, filter, ...)

Arguments

x

A data frame.

to

A data frame matching the specified conditions. Note that if match is a value other than "and", the original row order might be changed. See 'Details'.

match

String, indicating with which logical operation matching conditions should be combined. Can be "and" (or "&"), "or" (or "|") or "not" (or "!").

return_indices

Logical, if FALSE, return the vector of rows that can be used to filter the original data frame. If FALSE (default), returns directly the filtered data frame instead of the row indices.

drop_na

Logical, if TRUE, missing values (NAs) are removed before filtering the data. This is the default behaviour, however, sometimes when row indices are requested (i.e. return_indices=TRUE), it might be useful to preserve NA values, so returned row indices match the row indices of the original data frame.

...

Not used.

filter

A logical expression indicating which rows to keep, or a numeric vector indicating the row indices of rows to keep. Can also be a string representation of a logical expression. e.g. filter = "x > 4". This might be useful when used in packages to avoid defining undefined global variables.

Value

A filtered data frame, or the row indices that match the specified configuration.

Details

For data_match(), if match is either "or" or "not", the original row order from x might be changed. If preserving row order is required, use data_filter() instead.

# mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#>                    mpg vs am
#> Mazda RX4         21.0  0  1
#> Mazda RX4 Wag     21.0  0  1
#> Datsun 710        22.8  1  1
#> Hornet Sportabout 18.7  0  0
#> Duster 360        14.3  0  0
#> Merc 450SE        16.4  0  0

# re-sorting rows
head(data_match(mtcars[c("mpg", "vs", "am")],
                data.frame(vs = 0, am = 1),
                match = "or"))
#>                    mpg vs am
#> Mazda RX4         21.0  0  1
#> Mazda RX4 Wag     21.0  0  1
#> Hornet Sportabout 18.7  0  0
#> Duster 360        14.3  0  0
#> Merc 450SE        16.4  0  0
#> Merc 450SL        17.3  0  0

While data_match() works with data frames to match conditions against, data_filter() is basically a wrapper around subset(subset = <filter>). However, unlike subset(), it preserves label attributes and is useful when working with labelled data.

See also

Examples

data_match(mtcars, data.frame(vs = 0, am = 1))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

# observations where "vs" is NOT 0 AND "am" is NOT 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
# equivalent to
data_filter(mtcars, vs != 0 & am != 1)
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1

# observations where EITHER "vs" is 0 OR "am" is 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# equivalent to
data_filter(mtcars, vs == 0 | am == 1)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# slice data frame by row indices
data_filter(mtcars, 5:10)
#>                    mpg cyl  disp  hp drat   wt  qsec vs am gear carb
#> Hornet Sportabout 18.7   8 360.0 175 3.15 3.44 17.02  0  0    3    2
#> Valiant           18.1   6 225.0 105 2.76 3.46 20.22  1  0    3    1
#> Duster 360        14.3   8 360.0 245 3.21 3.57 15.84  0  0    3    4
#> Merc 240D         24.4   4 146.7  62 3.69 3.19 20.00  1  0    4    2
#> Merc 230          22.8   4 140.8  95 3.92 3.15 22.90  1  0    4    2
#> Merc 280          19.2   6 167.6 123 3.92 3.44 18.30  1  0    4    4

# Define a custom function containing data_filter() and pass variable names
# to it using curly brackets
my_filter <- function(data, variable) {
  data_filter(data, {variable} <= 20)
}
my_filter(mtcars, "mpg")
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

# Pass complete filter-condition as string
my_filter <- function(data, condition) {
  data_filter(data, {condition})
}
my_filter(mtcars, "am != 0")
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# string can also be used directly as argument
data_filter(mtcars, "am != 0")
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2