Safe and intuitive functions to rename variables or rows in
data frames. data_rename()
will rename column names, i.e. it facilitates
renaming variables. data_rename_rows()
is a convenient shortcut
to add or rename row names of a data frame, but unlike row.names()
, its
input and output is a data frame, thus, integrating smoothly into a
possible pipe-workflow.
Usage
data_rename(
data,
select = NULL,
replacement = NULL,
safe = TRUE,
verbose = TRUE,
pattern = NULL,
...
)
data_rename_rows(data, rows = NULL)
Arguments
- data
A data frame.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),for some functions, like
data_select()
ordata_rename()
,select
can be a named character vector. In this case, the names are used to rename the columns in the output data frame. See 'Details' in the related functions to see where this option applies.a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
, orregex()
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.regex()
can be used to define regular expression patterns.a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with()
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- replacement
Character vector. Can be one of the following:
A character vector that indicates the new names of the columns selected in
select
.select
andreplacement
must be of the same length.A string (i.e. character vector of length 1) with a "glue" styled pattern. Currently supported tokens are:
{col}
which will be replaced by the column name, i.e. the corresponding value inselect
.{n}
will be replaced by the number of the variable that is replaced.{letter}
will be replaced by alphabetical letters in sequential order. If more than 26 letters are required, letters are repeated, but have sequential numeric indices (e.g.,a1
toz1
, followed bya2
toz2
).Finally, the name of a user-defined object that is available in the environment can be used. Note that the object's name is not allowed to be one of the pre-defined tokens,
"col"
,"n"
and"letter"
.
An example for the use of tokens is...
data_rename( mtcars, select = c("am", "vs"), replacement = "new_name_from_{col}" )
... which would return new column names
new_name_from_am
andnew_name_from_vs
. See 'Examples'.
If
select
is a named vector,replacement
is ignored.- safe
Deprecated. Passing unknown column names now always errors.
- verbose
Toggle warnings.
- pattern
Deprecated. Use
select
instead.- ...
Other arguments passed to or from other functions.
- rows
Vector of row names.
Details
select
can also be a named character vector. In this case, the names are
used to rename the columns in the output data frame. If you have a named
list, use unlist()
to convert it to a named vector. See 'Examples'.
See also
Add a prefix or suffix to column names:
data_addprefix()
,data_addsuffix()
Functions to reorder or remove columns:
data_reorder()
,data_relocate()
,data_remove()
Functions to reshape, pivot or rotate data frames:
data_to_long()
,data_to_wide()
,data_rotate()
Functions to recode data:
rescale()
,reverse()
,categorize()
,recode_values()
,slide()
Functions to standardize, normalize, rank-transform:
center()
,standardize()
,normalize()
,ranktransform()
,winsorize()
Split and merge data frames:
data_partition()
,data_merge()
Functions to find or select columns:
data_select()
,extract_column_names()
Functions to filter rows:
data_match()
,data_filter()
Examples
# Rename columns
head(data_rename(iris, "Sepal.Length", "length"))
#> length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
# Use named vector to rename
head(data_rename(iris, c(length = "Sepal.Length", width = "Sepal.Width")))
#> length width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
# Change all
head(data_rename(iris, replacement = paste0("Var", 1:5)))
#> Var1 Var2 Var3 Var4 Var5
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
# Use glue-styled patterns
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "formerly_{col}"))
#> formerly_mpg formerly_cyl formerly_disp
#> Mazda RX4 21.0 6 160
#> Mazda RX4 Wag 21.0 6 160
#> Datsun 710 22.8 4 108
#> Hornet 4 Drive 21.4 6 258
#> Hornet Sportabout 18.7 8 360
#> Valiant 18.1 6 225
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "{col}_is_column_{n}"))
#> mpg_is_column_1 cyl_is_column_2 disp_is_column_3
#> Mazda RX4 21.0 6 160
#> Mazda RX4 Wag 21.0 6 160
#> Datsun 710 22.8 4 108
#> Hornet 4 Drive 21.4 6 258
#> Hornet Sportabout 18.7 8 360
#> Valiant 18.1 6 225
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "new_{letter}"))
#> new_a new_b new_c
#> Mazda RX4 21.0 6 160
#> Mazda RX4 Wag 21.0 6 160
#> Datsun 710 22.8 4 108
#> Hornet 4 Drive 21.4 6 258
#> Hornet Sportabout 18.7 8 360
#> Valiant 18.1 6 225
# User-defined glue-styled patterns from objects in environment
x <- c("hi", "there", "!")
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "col_{x}"))
#> col_hi col_there col_!
#> Mazda RX4 21.0 6 160
#> Mazda RX4 Wag 21.0 6 160
#> Datsun 710 22.8 4 108
#> Hornet 4 Drive 21.4 6 258
#> Hornet Sportabout 18.7 8 360
#> Valiant 18.1 6 225