row_count()
mimics base R's rowSums()
, with sums for a
specific value indicated by count
. Hence, it is similar to
rowSums(x == count, na.rm = TRUE)
, but offers some more options, including
strict comparisons. Comparisons using ==
coerce values to atomic vectors,
thus both 2 == 2
and "2" == 2
are TRUE
. In row_count()
, it is also
possible to make "type safe" comparisons using the allow_coercion
argument,
where "2" == 2
is not true.
Usage
row_count(
data,
select = NULL,
exclude = NULL,
count = NULL,
allow_coercion = TRUE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE
)
Arguments
- data
A data frame with at least two columns, where number of specific values are counted row-wise.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
orregex("")
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.or a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with("")
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- count
The value for which the row sum should be computed. May be a numeric value, a character string (for factors or character vectors),
NA
orInf
.- allow_coercion
Logical. If
FALSE
,count
matches only values of same class (i.e. whencount = 2
, the value"2"
is not counted and vice versa). By default, whenallow_coercion = TRUE
,count = 2
also matches"2"
. In order to count factor levels in the data, usecount = factor("level")
. See 'Examples'.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains("")
orselect = regex("")
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.- verbose
Toggle warnings.
Examples
dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)
)
# count all 4s per row
row_count(dat, count = 4)
#> [1] 0 1 0 1
# count all missing values per row
row_count(dat, count = NA)
#> [1] 2 0 3 1
dat <- data.frame(
c1 = c("1", "2", NA, "3"),
c2 = c(NA, "2", NA, "3"),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, Inf)
)
# count all 2s and "2"s per row
row_count(dat, count = 2)
#> [1] 1 2 0 0
# only count 2s, but not "2"s
row_count(dat, count = 2, allow_coercion = FALSE)
#> [1] 1 0 0 0
dat <- data.frame(
c1 = factor(c("1", "2", NA, "3")),
c2 = c("2", "1", NA, "3"),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, Inf)
)
# find only character "2"s
row_count(dat, count = "2", allow_coercion = FALSE)
#> [1] 1 0 0 0
# find only factor level "2"s
row_count(dat, count = factor("2"), allow_coercion = FALSE)
#> [1] 0 1 0 0