Relocate (reorder) columns of a data frame
Source:R/data_relocate.R
, R/data_remove.R
data_relocate.Rd
data_relocate()
will reorder columns to specific positions, indicated by
before
or after
. data_reorder()
will instead move selected columns to
the beginning of a data frame. Finally, data_remove()
removes columns
from a data frame. All functions support select-helpers that allow flexible
specification of a search pattern to find matching columns, which should
be reordered or removed.
Usage
data_relocate(
data,
select,
before = NULL,
after = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
data_reorder(
data,
select,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
data_remove(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...
)
Arguments
- data
A data frame.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),for some functions, like
data_select()
ordata_rename()
,select
can be a named character vector. In this case, the names are used to rename the columns in the output data frame. See 'Details' in the related functions to see where this option applies.a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
, orregex()
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.regex()
can be used to define regular expression patterns.a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with()
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- before, after
Destination of columns. Supplying neither will move columns to the left-hand side; specifying both is an error. Can be a character vector, indicating the name of the destination column, or a numeric value, indicating the index number of the destination column. If
-1
, will be added before or after the last column.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains()
orselect = regex()
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.- verbose
Toggle warnings.
- ...
Arguments passed down to other functions. Mostly not used yet.
- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.
See also
Add a prefix or suffix to column names:
data_addprefix()
,data_addsuffix()
Functions to reorder or remove columns:
data_reorder()
,data_relocate()
,data_remove()
Functions to reshape, pivot or rotate data frames:
data_to_long()
,data_to_wide()
,data_rotate()
Functions to recode data:
rescale()
,reverse()
,categorize()
,recode_values()
,slide()
Functions to standardize, normalize, rank-transform:
center()
,standardize()
,normalize()
,ranktransform()
,winsorize()
Split and merge data frames:
data_partition()
,data_merge()
Functions to find or select columns:
data_select()
,extract_column_names()
Functions to filter rows:
data_match()
,data_filter()
Examples
# Reorder columns
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 5.1 3.5 1.4 0.2
#> 2 setosa 4.9 3.0 1.4 0.2
#> 3 setosa 4.7 3.2 1.3 0.2
#> 4 setosa 4.6 3.1 1.5 0.2
#> 5 setosa 5.0 3.6 1.4 0.2
#> 6 setosa 5.4 3.9 1.7 0.4
head(data_relocate(iris, select = "Species", before = "Sepal.Width"))
#> Sepal.Length Species Sepal.Width Petal.Length Petal.Width
#> 1 5.1 setosa 3.5 1.4 0.2
#> 2 4.9 setosa 3.0 1.4 0.2
#> 3 4.7 setosa 3.2 1.3 0.2
#> 4 4.6 setosa 3.1 1.5 0.2
#> 5 5.0 setosa 3.6 1.4 0.2
#> 6 5.4 setosa 3.9 1.7 0.4
head(data_relocate(iris, select = "Sepal.Width", after = "Species"))
#> Sepal.Length Petal.Length Petal.Width Species Sepal.Width
#> 1 5.1 1.4 0.2 setosa 3.5
#> 2 4.9 1.4 0.2 setosa 3.0
#> 3 4.7 1.3 0.2 setosa 3.2
#> 4 4.6 1.5 0.2 setosa 3.1
#> 5 5.0 1.4 0.2 setosa 3.6
#> 6 5.4 1.7 0.4 setosa 3.9
# which is same as
head(data_relocate(iris, select = "Sepal.Width", after = -1))
#> Sepal.Length Petal.Length Petal.Width Species Sepal.Width
#> 1 5.1 1.4 0.2 setosa 3.5
#> 2 4.9 1.4 0.2 setosa 3.0
#> 3 4.7 1.3 0.2 setosa 3.2
#> 4 4.6 1.5 0.2 setosa 3.1
#> 5 5.0 1.4 0.2 setosa 3.6
#> 6 5.4 1.7 0.4 setosa 3.9
# Reorder multiple columns
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = "Sepal.Width"))
#> Sepal.Length Sepal.Width Species Petal.Length Petal.Width
#> 1 5.1 3.5 setosa 1.4 0.2
#> 2 4.9 3.0 setosa 1.4 0.2
#> 3 4.7 3.2 setosa 1.3 0.2
#> 4 4.6 3.1 setosa 1.5 0.2
#> 5 5.0 3.6 setosa 1.4 0.2
#> 6 5.4 3.9 setosa 1.7 0.4
# which is same as
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = 2))
#> Sepal.Length Sepal.Width Species Petal.Length Petal.Width
#> 1 5.1 3.5 setosa 1.4 0.2
#> 2 4.9 3.0 setosa 1.4 0.2
#> 3 4.7 3.2 setosa 1.3 0.2
#> 4 4.6 3.1 setosa 1.5 0.2
#> 5 5.0 3.6 setosa 1.4 0.2
#> 6 5.4 3.9 setosa 1.7 0.4
# Reorder columns
head(data_reorder(iris, c("Species", "Sepal.Length")))
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 5.1 3.5 1.4 0.2
#> 2 setosa 4.9 3.0 1.4 0.2
#> 3 setosa 4.7 3.2 1.3 0.2
#> 4 setosa 4.6 3.1 1.5 0.2
#> 5 setosa 5.0 3.6 1.4 0.2
#> 6 setosa 5.4 3.9 1.7 0.4
# Remove columns
head(data_remove(iris, "Sepal.Length"))
#> Sepal.Width Petal.Length Petal.Width Species
#> 1 3.5 1.4 0.2 setosa
#> 2 3.0 1.4 0.2 setosa
#> 3 3.2 1.3 0.2 setosa
#> 4 3.1 1.5 0.2 setosa
#> 5 3.6 1.4 0.2 setosa
#> 6 3.9 1.7 0.4 setosa
head(data_remove(iris, starts_with("Sepal")))
#> Petal.Length Petal.Width Species
#> 1 1.4 0.2 setosa
#> 2 1.4 0.2 setosa
#> 3 1.3 0.2 setosa
#> 4 1.5 0.2 setosa
#> 5 1.4 0.2 setosa
#> 6 1.7 0.4 setosa