Performs a normalization of data, i.e., it scales variables in the range
0 - 1. This is a special case of rescale()
. unnormalize()
is the
counterpart, but only works for variables that have been normalized with
normalize()
.
Usage
normalize(x, ...)
# S3 method for class 'numeric'
normalize(x, include_bounds = TRUE, verbose = TRUE, ...)
# S3 method for class 'data.frame'
normalize(
x,
select = NULL,
exclude = NULL,
include_bounds = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
unnormalize(x, ...)
# S3 method for class 'numeric'
unnormalize(x, verbose = TRUE, ...)
# S3 method for class 'data.frame'
unnormalize(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
# S3 method for class 'grouped_df'
unnormalize(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
Arguments
- x
A numeric vector, (grouped) data frame, or matrix. See 'Details'.
- ...
Arguments passed to or from other methods.
- include_bounds
Numeric or logical. Using this can be useful in case of beta-regression, where the response variable is not allowed to include zeros and ones. If
TRUE
, the input is normalized to a range that includes zero and one. IfFALSE
, the return value is compressed, using Smithson and Verkuilen's (2006) formula(x * (n - 1) + 0.5) / n
, to avoid zeros and ones in the normalized variables. Else, if numeric (e.g.,0.001
),include_bounds
defines the "distance" to the lower and upper bound, i.e. the normalized vectors are rescaled to a range from0 + include_bounds
to1 - include_bounds
.- verbose
Toggle warnings and messages on or off.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),for some functions, like
data_select()
ordata_rename()
,select
can be a named character vector. In this case, the names are used to rename the columns in the output data frame. See 'Details' in the related functions to see where this option applies.a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
, orregex()
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.regex()
can be used to define regular expression patterns.a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with()
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- append
Logical or string. If
TRUE
, standardized variables get new column names (with the suffix"_z"
) and are appended (column bind) tox
, thus returning both the original and the standardized variables. IfFALSE
, original variables inx
will be overwritten by their standardized versions. If a character value, standardized variables are appended with new column names (using the defined suffix) to the original data frame.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains()
orselect = regex()
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
Details
If
x
is a matrix, normalization is performed across all values (not column- or row-wise). For column-wise normalization, convert the matrix to a data.frame.If
x
is a grouped data frame (grouped_df
), normalization is performed separately for each group.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
References
Smithson M, Verkuilen J (2006). A Better Lemon Squeezer? Maximum-Likelihood Regression with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.
See also
See makepredictcall.dw_transformer()
for use in model formulas.
Other transform utilities:
ranktransform()
,
rescale()
,
reverse()
,
standardize()
Examples
normalize(c(0, 1, 5, -5, -2))
#> [1] 0.5 0.6 1.0 0.0 0.3
#> (original range = -5 to 5)
#>
normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)
#> [1] 0.50 0.58 0.90 0.10 0.34
#> (original range = -5 to 5)
#>
# use a value defining the bounds
normalize(c(0, 1, 5, -5, -2), include_bounds = .001)
#> [1] 0.5000 0.5998 0.9990 0.0010 0.3004
#> (original range = -5 to 5)
#>
head(normalize(trees))
#> Girth Height Volume
#> 1 0.00000000 0.29166667 0.001497006
#> 2 0.02439024 0.08333333 0.001497006
#> 3 0.04065041 0.00000000 0.000000000
#> 4 0.17886179 0.37500000 0.092814371
#> 5 0.19512195 0.75000000 0.128742515
#> 6 0.20325203 0.83333333 0.142215569