Convert non-missing values in a variable into missing values.
Source:R/convert_to_na.R
convert_to_na.Rd
Convert non-missing values in a variable into missing values.
Usage
convert_to_na(x, ...)
# S3 method for class 'numeric'
convert_to_na(x, na = NULL, verbose = TRUE, ...)
# S3 method for class 'factor'
convert_to_na(x, na = NULL, drop_levels = FALSE, verbose = TRUE, ...)
# S3 method for class 'data.frame'
convert_to_na(
x,
select = NULL,
exclude = NULL,
na = NULL,
drop_levels = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
Arguments
- x
A vector, factor or a data frame.
- ...
Not used.
- na
Numeric, character vector or logical (or a list of numeric, character vectors or logicals) with values that should be converted to
NA
. Numeric values applied to numeric vectors, character values are used for factors, character vectors or date variables, and logical values for logical vectors.- verbose
Toggle warnings.
- drop_levels
Logical, for factors, when specific levels are replaced by
NA
, should unused levels be dropped?- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
orregex("")
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.or a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with("")
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains("")
orselect = regex("")
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
Examples
x <- sample(1:6, size = 30, replace = TRUE)
x
#> [1] 5 5 6 3 1 4 6 1 6 1 3 6 4 1 6 6 3 6 5 3 6 2 5 5 3 2 2 2 4 2
# values 4 and 5 to NA
convert_to_na(x, na = 4:5)
#> [1] NA NA 6 3 1 NA 6 1 6 1 3 6 NA 1 6 6 3 6 NA 3 6 2 NA NA 3
#> [26] 2 2 2 NA 2
# data frames
set.seed(123)
x <- data.frame(
a = sample(1:6, size = 20, replace = TRUE),
b = sample(letters[1:6], size = 20, replace = TRUE),
c = sample(c(30:33, 99), size = 20, replace = TRUE)
)
# for all numerics, convert 5 to NA. Character/factor will be ignored.
convert_to_na(x, na = 5)
#> Could not convert values into `NA` for a factor or character variable.
#> To do this, `na` needs to be a character vector, or a list that contains
#> character vector elements.
#> a b c
#> 1 3 a 33
#> 2 6 e 99
#> 3 3 c 99
#> 4 2 b 32
#> 5 2 b 30
#> 6 6 a 31
#> 7 3 f 99
#> 8 NA c 99
#> 9 4 d 33
#> 10 6 f 99
#> 11 6 a 31
#> 12 1 c 30
#> 13 2 e 30
#> 14 3 d 32
#> 15 NA b 30
#> 16 3 e 99
#> 17 3 a 30
#> 18 1 a 31
#> 19 4 b 33
#> 20 1 c 33
# for numerics, 5 to NA, for character/factor, "f" to NA
convert_to_na(x, na = list(6, "f"))
#> a b c
#> 1 3 a 33
#> 2 NA e 99
#> 3 3 c 99
#> 4 2 b 32
#> 5 2 b 30
#> 6 NA a 31
#> 7 3 <NA> 99
#> 8 5 c 99
#> 9 4 d 33
#> 10 NA <NA> 99
#> 11 NA a 31
#> 12 1 c 30
#> 13 2 e 30
#> 14 3 d 32
#> 15 5 b 30
#> 16 3 e 99
#> 17 3 a 30
#> 18 1 a 31
#> 19 4 b 33
#> 20 1 c 33
# select specific variables
convert_to_na(x, select = c("a", "b"), na = list(6, "f"))
#> a b c
#> 1 3 a 33
#> 2 NA e 99
#> 3 3 c 99
#> 4 2 b 32
#> 5 2 b 30
#> 6 NA a 31
#> 7 3 <NA> 99
#> 8 5 c 99
#> 9 4 d 33
#> 10 NA <NA> 99
#> 11 NA a 31
#> 12 1 c 30
#> 13 2 e 30
#> 14 3 d 32
#> 15 5 b 30
#> 16 3 e 99
#> 17 3 a 30
#> 18 1 a 31
#> 19 4 b 33
#> 20 1 c 33