Rescale variables to a new range. Can also be used to reverse-score variables (change the keying/scoring direction), or to expand a range.
Usage
rescale(x, ...)
change_scale(x, ...)
# S3 method for class 'numeric'
rescale(
x,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
verbose = TRUE,
...
)
# S3 method for class 'data.frame'
rescale(
x,
select = NULL,
exclude = NULL,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...
)
Arguments
- x
A (grouped) data frame, numeric vector or factor.
- ...
Arguments passed to or from other methods.
- to
Numeric vector of length 2 giving the new range that the variable will have after rescaling. To reverse-score a variable, the range should be given with the maximum value first. See examples.
- multiply
If not
NULL
,to
is ignored andmultiply
will be used, giving the factor by which the actual range ofx
should be expanded. For example, if a vector ranges from 5 to 15 andmultiply = 1.1
, the current range of 10 will be expanded by the factor of 1.1, giving a new range of 11. Thus, the rescaled vector would range from 4.5 to 15.5.- add
A vector of length 1 or 2. If not
NULL
,to
is ignored andadd
will be used, giving the amount by which the minimum and maximum of the actual range ofx
should be expanded. For example, if a vector ranges from 5 to 15 andadd = 1
, the range will be expanded from 4 to 16. Ifadd
is of length 2, then the first value is used for the lower bound and the second value for the upper bound.- range
Initial (old) range of values. If
NULL
, will take the range of the input vector (range(x)
).- verbose
Toggle warnings.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), a character vector of variable names (e.g.,c("col1", "col2", "col3")
), or a character vector of variable names including ranges specified via:
(e.g.,c("col1:col3", "col5")
),a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with()
,ends_with()
,contains()
, a range using:
orregex("")
.starts_with()
,ends_with()
, andcontains()
accept several patterns, e.gstarts_with("Sep", "Petal")
.or a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with("")
,-is.numeric
or-(Sepal.Width:Petal.Length)
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.extract_column_names(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- append
Logical or string. If
TRUE
, recoded or converted variables get new column names and are appended (column bind) tox
, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function:"_r"
for recode functions,"_n"
forto_numeric()
,"_f"
forto_factor()
, or"_s"
forslide()
. Ifappend=FALSE
, original variables inx
will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.- regex
Logical, if
TRUE
, the search pattern fromselect
will be treated as regular expression. Whenregex = TRUE
, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1.regex = TRUE
is comparable to using one of the two select-helpers,select = contains("")
orselect = regex("")
, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
See also
See makepredictcall.dw_transformer()
for use in model formulas.
Other transform utilities:
normalize()
,
ranktransform()
,
reverse()
,
standardize()
Examples
rescale(c(0, 1, 5, -5, -2))
#> [1] 50 60 100 0 30
#> (original range = -5 to 5)
#>
rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
#> [1] 0 1 5 -5 -2
#> (original range = -5 to 5)
#>
rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))
#> [1] -2 -1 0 1 2
#> (original range = 1 to 5)
#>
# Specify the "theoretical" range of the input vector
rescale(c(1, 3, 4), to = c(0, 40), range = c(0, 4))
#> [1] 10 30 40
#> (original range = 0 to 4)
#>
# Reverse-score a variable
rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
#> [1] 5 4 3 2 1
#> (original range = 1 to 5)
#>
rescale(c(1, 2, 3, 4, 5), to = c(2, -2))
#> [1] 2 1 0 -1 -2
#> (original range = 1 to 5)
#>
# Data frames
head(rescale(iris, to = c(0, 1)))
#> Variables of class `factor` can't be rescaled and remain unchanged.
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 0.22222222 0.6250000 0.06779661 0.04166667 setosa
#> 2 0.16666667 0.4166667 0.06779661 0.04166667 setosa
#> 3 0.11111111 0.5000000 0.05084746 0.04166667 setosa
#> 4 0.08333333 0.4583333 0.08474576 0.04166667 setosa
#> 5 0.19444444 0.6666667 0.06779661 0.04166667 setosa
#> 6 0.30555556 0.7916667 0.11864407 0.12500000 setosa
head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 0.22222222 3.5 1.4 0.2 setosa
#> 2 0.16666667 3.0 1.4 0.2 setosa
#> 3 0.11111111 3.2 1.3 0.2 setosa
#> 4 0.08333333 3.1 1.5 0.2 setosa
#> 5 0.19444444 3.6 1.4 0.2 setosa
#> 6 0.30555556 3.9 1.7 0.4 setosa
# One can specify a list of ranges
head(rescale(iris, to = list(
"Sepal.Length" = c(0, 1),
"Petal.Length" = c(-1, 0)
)))
#> Variables of class `factor` can't be rescaled and remain unchanged.
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 0.22222222 3.5 -0.9322034 0.2 setosa
#> 2 0.16666667 3.0 -0.9322034 0.2 setosa
#> 3 0.11111111 3.2 -0.9491525 0.2 setosa
#> 4 0.08333333 3.1 -0.9152542 0.2 setosa
#> 5 0.19444444 3.6 -0.9322034 0.2 setosa
#> 6 0.30555556 3.9 -0.8813559 0.4 setosa
# "expand" ranges by a factor or a given value
x <- 5:15
x
#> [1] 5 6 7 8 9 10 11 12 13 14 15
# both will expand the range by 10%
rescale(x, multiply = 1.1)
#> [1] 4.5 5.6 6.7 7.8 8.9 10.0 11.1 12.2 13.3 14.4 15.5
#> (original range = 5 to 15)
#>
rescale(x, add = 0.5)
#> [1] 4.5 5.6 6.7 7.8 8.9 10.0 11.1 12.2 13.3 14.4 15.5
#> (original range = 5 to 15)
#>
# expand range by different values
rescale(x, add = c(1, 3))
#> [1] 4.0 5.4 6.8 8.2 9.6 11.0 12.4 13.8 15.2 16.6 18.0
#> (original range = 5 to 15)
#>
# Specify list of multipliers
d <- data.frame(x = 5:15, y = 5:15)
rescale(d, multiply = list(x = 1.1, y = 0.5))
#> x y
#> 1 4.5 7.5
#> 2 5.6 8.0
#> 3 6.7 8.5
#> 4 7.8 9.0
#> 5 8.9 9.5
#> 6 10.0 10.0
#> 7 11.1 10.5
#> 8 12.2 11.0
#> 9 13.3 11.5
#> 10 14.4 12.0
#> 11 15.5 12.5