Comprehensive Model Parameters |
|
|---|---|
Model Parameters |
|
Parameters from ANOVAs |
|
Parameters from PCA/FA |
|
|
|
Parameters from (General) Linear Models |
Parameters from Zero-Inflated Models |
|
|
|
Parameters from Generalized Additive (Mixed) Models |
|
|
Parameters from multinomial or cumulative link models |
|
|
Parameters from Mixed Models |
Parameters from CFA/SEM models |
|
Parameters from Cluster Models (k-means, ...) |
|
Parameters from Mixture Models |
|
Parameters from multiply imputed repeated analyses |
|
|
|
Parameters from Structural Models (PCA, EFA, ...) |
Parameters from Bayesian Models |
|
Parameters from BayesFactor objects |
|
Parameters from Meta-Analysis |
|
Parameters from Correlations and t-tests |
|
Parameters from Hypothesis Testing |
|
|
|
Parameters from special models |
Summary information from random effects |
|
Print model parameters |
|
Standard Errors, Confidence Intervals, Degrees of Freesom and p-values |
|
Standard Errors |
|
|
|
Confidence Intervals (CI) |
p-values |
|
Degrees of Freedom (DoF) |
|
Count number of parameters in a model |
|
Robust Estimation Methods |
|
Robust estimation |
|
Approximation Methods |
|
Wald-test approximation for CIs and p-values |
|
Kenward-Roger approximation for SEs, CIs and p-values |
|
|
|
Satterthwaite approximation for SEs, CIs and p-values |
|
|
Between-within approximation for SEs, CIs and p-values |
"m-l-1" approximation for SEs, CIs and p-values |
|
Effect Existence and Significance |
|
Objects exported from other packages |
|
Equivalence test |
|
Parameter Sampling |
|
Model bootstrapping |
|
Parameters bootstrapping |
|
Simulated draws from model coefficients |
|
Simulate Model Parameters |
|
Variable Preparation |
|
Compute group-meaned and de-meaned variables |
|
Rescale design weights for multilevel analysis |
|
Partition data into a test and a training set |
|
Convert data to numeric |
|
Feature Reduction |
|
Dimensionality reduction (DR) / Features Reduction |
|
Automated selection of model parameters |
|
Data Reduction |
|
Cluster Analysis |
|
Check suitability of data for clustering |
|
Compute cluster analysis and return group indices |
|
Compute a linear discriminant analysis on classified cluster groups |
|
Number of clusters to extract |
|
Factors and Principal Components |
|
Check suitability of data for Factor Analysis (FA) |
|
Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis |
|
Bartlett's Test of Sphericity |
|
Conversion between EFA results and CFA structure |
|
Factor Analysis (FA) |
|
Get Scores from Principal Component Analysis (PCA) |
|
Number of components/factors to retain in PCA/FA |
|
Principal Component Analysis (PCA) |
|
Dimensionality reduction (DR) / Features Reduction |
|
Reshape loadings between wide/long formats |
|
Data Properties |
|
Describe a distribution |
|
Check if a distribution is unimodal or multimodal |
|
|
|
Compute Skewness and Kurtosis |
Quantify the smoothness of a vector |
|
Table and Value Formatting |
|
Objects exported from other packages |
|
Order (first, second, ...) formatting |
|
Parameter names formatting |
|
Parameter table formatting |
|
Type of model parameters |
|
Standardize column names |
|
Example Data Sets |
|
Sample data set |
|
Sample data set |
|