
Package index
-
compare_parameters()compare_models() - Compare model parameters of multiple models
-
dominance_analysis() - Dominance Analysis
-
model_parameters()parameters() - Model Parameters
-
pool_parameters() - Pool Model Parameters
-
random_parameters() - Summary information from random effects
-
format(<parameters_model>)print(<parameters_model>)summary(<parameters_model>)print_html(<parameters_model>)print_md(<parameters_model>) - Print model parameters
-
sort_parameters() - Sort parameters by coefficient values
-
standardize_parameters()standardize_posteriors() - Parameters standardization
-
standardize_info() - Get Standardization Information
-
model_parameters(<aov>) - Parameters from ANOVAs
-
model_parameters(<befa>) - Parameters from Bayesian Exploratory Factor Analysis
-
model_parameters(<default>) - Parameters from (General) Linear Models
-
model_parameters(<zcpglm>) - Parameters from Zero-Inflated Models
-
model_parameters(<cgam>) - Parameters from Generalized Additive (Mixed) Models
-
model_parameters(<mlm>) - Parameters from multinomial or cumulative link models
-
model_parameters(<glmmTMB>) - Parameters from Mixed Models
-
model_parameters(<hclust>) - Parameters from Cluster Models (k-means, ...)
-
model_parameters(<mira>) - Parameters from multiply imputed repeated analyses
-
model_parameters(<lavaan>)model_parameters(<principal>) - Parameters from PCA, FA, CFA, SEM
-
model_parameters(<data.frame>)model_parameters(<brmsfit>) - Parameters from Bayesian Models
-
model_parameters(<BFBayesFactor>) - Parameters from BayesFactor objects
-
model_parameters(<rma>) - Parameters from Meta-Analysis
-
model_parameters(<htest>)model_parameters(<coeftest>) - Parameters from hypothesis tests
-
model_parameters(<glht>) - Parameters from Hypothesis Testing
-
model_parameters(<glimML>) - Parameters from special models
-
model_parameters(<t1way>) - Parameters from robust statistical objects in
WRS2
-
model_parameters(<compare.loo>) - Bayesian Model Comparison
-
standard_error() - Standard Errors
-
ci(<default>) - Confidence Intervals (CI)
-
p_value() - p-values
-
degrees_of_freedom()dof() - Degrees of Freedom (DoF)
-
ci_kenward()dof_kenward()p_value_kenward()se_kenward() - Kenward-Roger approximation for SEs, CIs and p-values
-
ci_satterthwaite()dof_satterthwaite()p_value_satterthwaite()se_satterthwaite() - Satterthwaite approximation for SEs, CIs and p-values
-
ci_betwithin()dof_betwithin()p_value_betwithin() - Between-within approximation for SEs, CIs and p-values
-
ci_ml1()dof_ml1()p_value_ml1() - "m-l-1" approximation for SEs, CIs and p-values
-
equivalence_test(<lm>) - Equivalence test
-
p_calibrate() - Calculate calibrated p-values.
-
p_direction(<lm>) - Probability of Direction (pd)
-
p_function()consonance_function()confidence_curve()format(<parameters_p_function>)print(<parameters_p_function>)print_html(<parameters_p_function>) - p-value or consonance function
-
p_significance(<lm>) - Practical Significance (ps)
-
bootstrap_model() - Model bootstrapping
-
bootstrap_parameters() - Parameters bootstrapping
-
simulate_model() - Simulated draws from model coefficients
-
simulate_parameters() - Simulate Model Parameters
-
reduce_parameters()reduce_data() - Dimensionality reduction (DR) / Features Reduction
-
select_parameters() - Automated selection of model parameters
-
cluster_analysis() - Cluster Analysis
-
cluster_centers() - Find the cluster centers in your data
-
cluster_discrimination() - Compute a linear discriminant analysis on classified cluster groups
-
cluster_meta() - Metaclustering
-
cluster_performance() - Performance of clustering models
-
n_clusters()n_clusters_elbow()n_clusters_gap()n_clusters_silhouette()n_clusters_dbscan()n_clusters_hclust() - Find number of clusters in your data
-
predict(<parameters_clusters>) - Predict method for parameters_clusters objects
-
convert_efa_to_cfa()efa_to_cfa() - Conversion between EFA results and CFA structure
-
factor_analysis()principal_components()rotated_data()print_html(<parameters_efa>)predict(<parameters_efa>)print(<parameters_efa>)sort(<parameters_efa>)closest_component() - Principal Component Analysis (PCA) and Factor Analysis (FA)
-
factor_scores() - Extract factor scores from Factor Analysis (EFA) or Omega
-
get_scores() - Get Scores from Principal Component or Factor Analysis (PCA/FA)
-
n_factors()n_components() - Number of components/factors to retain in PCA/FA
-
reduce_parameters()reduce_data() - Dimensionality reduction (DR) / Features Reduction
-
reshape_loadings() - Reshape loadings between wide/long formats
-
display(<parameters_model>) - Print tables in different output formats
-
format_order() - Order (first, second, ...) formatting
-
format_parameters() - Parameter names formatting
-
format_p_adjust() - Format the name of the p-value adjustment methods
-
format_df_adjust() - Format the name of the degrees-of-freedom adjustment methods
-
format(<compare_parameters>)print(<compare_parameters>)print_html(<compare_parameters>)print_md(<compare_parameters>) - Print comparisons of model parameters
-
parameters_type() - Type of model parameters
-
reexportsequivalence_testcin_parametersp_directionp_significancestandardize_namessupported_modelsprint_htmlprint_mddisplaydescribe_distributiondemeanrescale_weightsvisualisation_recipekurtosisskewness - Objects exported from other packages
-
reexportsequivalence_testcin_parametersp_directionp_significancestandardize_namessupported_modelsprint_htmlprint_mddisplaydescribe_distributiondemeanrescale_weightsvisualisation_recipekurtosisskewness - Objects exported from other packages
-
parameters-options - Global options from the parameters package
-
qol_cancer - Sample data set
-
fish - Sample data set