Parameters from PCA, FA, CFA, SEM
Source:R/methods_lavaan.R
, R/methods_psych.R
model_parameters.principal.Rd
Format structural models from the psych or FactoMineR packages.
Usage
# S3 method for class 'lavaan'
model_parameters(
model,
ci = 0.95,
standardize = FALSE,
component = c("regression", "correlation", "loading", "defined"),
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
# S3 method for class 'principal'
model_parameters(
model,
sort = FALSE,
threshold = NULL,
labels = NULL,
verbose = TRUE,
...
)
Arguments
- model
Model object.
- ci
Confidence Interval (CI) level. Default to
0.95
(95%
).- standardize
Return standardized parameters (standardized coefficients). Can be
TRUE
(or"all"
or"std.all"
) for standardized estimates based on both the variances of observed and latent variables;"latent"
(or"std.lv"
) for standardized estimates based on the variances of the latent variables only; or"no_exogenous"
(or"std.nox"
) for standardized estimates based on both the variances of observed and latent variables, but not the variances of exogenous covariates. Seelavaan::standardizedsolution
for details.- component
What type of links to return. Can be
"all"
or some ofc("regression", "correlation", "loading", "variance", "mean")
.- keep
Character containing a regular expression pattern that describes the parameters that should be included (for
keep
) or excluded (fordrop
) in the returned data frame.keep
may also be a named list of regular expressions. All non-matching parameters will be removed from the output. Ifkeep
is a character vector, every parameter name in the "Parameter" column that matches the regular expression inkeep
will be selected from the returned data frame (and vice versa, all parameter names matchingdrop
will be excluded). Furthermore, ifkeep
has more than one element, these will be merged with anOR
operator into a regular expression pattern like this:"(one|two|three)"
. Ifkeep
is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects wheremodel_parameters()
returns multiple columns with parameter components, like inmodel_parameters.lavaan()
. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the$Parameter
column of the parameters table to get the exact parameter names.- drop
See
keep
.- verbose
Toggle warnings.
- ...
Arguments passed to or from other methods.
- sort
Sort the loadings.
- threshold
A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be
"max"
, in which case it will only display the maximum loading per variable (the most simple structure).- labels
A character vector containing labels to be added to the loadings data. Usually, the question related to the item.
Details
For the structural models obtained with psych, the following indices are present:
Complexity (Hoffman's, 1978; Pettersson and Turkheimer, 2010) represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1.
Uniqueness represents the variance that is 'unique' to the variable and not shared with other variables. It is equal to
1 – communality
(variance that is shared with other variables). A uniqueness of0.20
suggests that20%
or that variable's variance is not shared with other variables in the overall factor model. The greater 'uniqueness' the lower the relevance of the variable in the factor model.MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).
Note
There is also a
plot()
-method
for lavaan
models implemented in the
see-package.
References
Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and Psychological Measurement, 34(1):111–117
Pettersson, E., and Turkheimer, E. (2010). Item selection, evaluation, and simple structure in personality data. Journal of research in personality, 44(4), 407-420.
Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.
Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson Education.
Rosseel Y (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36.
Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1-30. http://www.jstatsoft.org/v85/i04/
Examples
# \donttest{
library(parameters)
if (require("psych", quietly = TRUE)) {
# Principal Component Analysis (PCA) ---------
pca <- psych::principal(attitude)
model_parameters(pca)
pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
model_parameters(pca, sort = TRUE, threshold = 0.2)
principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)
# Exploratory Factor Analysis (EFA) ---------
efa <- psych::fa(attitude, nfactors = 3)
model_parameters(efa,
threshold = "max", sort = TRUE,
labels = as.character(1:ncol(attitude))
)
# Omega ---------
omega <- psych::omega(mtcars, nfactors = 3)
params <- model_parameters(omega)
params
summary(params)
}
#> Composite | Total Variance (%) | Variance due to General Factor (%) | Variance due to Group Factor (%)
#> ------------------------------------------------------------------------------------------------------
#> g | 97.28 | 56.64 | 26.42
#> F1* | 90.12 | 31.07 | 59.05
#> F2* | 91.37 | 69.32 | 22.04
#> F3* | 87.36 | 59.65 | 27.71
# }
# lavaan
library(parameters)
# lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
# Confirmatory Factor Analysis (CFA) ---------
structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "
model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)
# filter parameters
model_parameters(
model,
parameters = list(
To = "^(?!visual)",
From = "^(?!(x7|x8))"
)
)
# Structural Equation Model (SEM) ------------
structure <- "
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)
}
#> # Loading
#>
#> Link | Coefficient | SE | 95% CI | z | p
#> --------------------------------------------------------------------
#> ind60 =~ x1 | 0.92 | 0.02 | [0.88, 0.97] | 40.08 | < .001
#> ind60 =~ x2 | 0.97 | 0.02 | [0.94, 1.01] | 59.14 | < .001
#> ind60 =~ x3 | 0.87 | 0.03 | [0.81, 0.93] | 28.09 | < .001
#> dem60 =~ y1 | 0.85 | 0.04 | [0.77, 0.93] | 20.92 | < .001
#> dem60 =~ y2 (a) | 0.69 | 0.06 | [0.57, 0.81] | 11.58 | < .001
#> dem60 =~ y3 (b) | 0.76 | 0.05 | [0.66, 0.86] | 14.70 | < .001
#> dem60 =~ y4 (c) | 0.84 | 0.04 | [0.76, 0.92] | 20.12 | < .001
#> dem65 =~ y5 | 0.82 | 0.04 | [0.73, 0.90] | 18.52 | < .001
#> dem65 =~ y6 (a) | 0.75 | 0.05 | [0.65, 0.86] | 14.01 | < .001
#> dem65 =~ y7 (b) | 0.80 | 0.05 | [0.71, 0.89] | 17.40 | < .001
#> dem65 =~ y8 (c) | 0.83 | 0.04 | [0.75, 0.91] | 19.79 | < .001
#>
#> # Regression
#>
#> Link | Coefficient | SE | 95% CI | z | p
#> ------------------------------------------------------------------
#> dem60 ~ ind60 | 0.45 | 0.10 | [0.25, 0.65] | 4.33 | < .001
#> dem65 ~ ind60 | 0.19 | 0.07 | [0.05, 0.33] | 2.64 | 0.008
#> dem65 ~ dem60 | 0.88 | 0.05 | [0.78, 0.98] | 17.24 | < .001
#>
#> # Correlation
#>
#> Link | Coefficient | SE | 95% CI | z | p
#> -------------------------------------------------------------
#> y1 ~~ y5 | 0.28 | 0.14 | [ 0.00, 0.56] | 1.97 | 0.049
#> y2 ~~ y4 | 0.29 | 0.11 | [ 0.07, 0.52] | 2.55 | 0.011
#> y2 ~~ y6 | 0.36 | 0.10 | [ 0.17, 0.54] | 3.71 | < .001
#> y3 ~~ y7 | 0.17 | 0.13 | [-0.09, 0.43] | 1.26 | 0.208
#> y4 ~~ y8 | 0.11 | 0.13 | [-0.14, 0.36] | 0.86 | 0.388
#> y6 ~~ y8 | 0.34 | 0.11 | [ 0.12, 0.55] | 3.08 | 0.002