Skip to contents

This function extracts information, such as the deviations (SD or MAD) from parent variables, that are necessary for post-hoc standardization of parameters. This function gives a window on how standardized are obtained, i.e., by what they are divided. The "basic" method of standardization uses.

Usage

standardize_info(model, ...)

# Default S3 method
standardize_info(
  model,
  robust = FALSE,
  two_sd = FALSE,
  include_pseudo = FALSE,
  verbose = TRUE,
  ...
)

Arguments

model

A statistical model.

...

Arguments passed to or from other methods.

robust

Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).

two_sd

If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).

include_pseudo

(For (G)LMMs) Should Pseudo-standardized information be included?

verbose

Toggle warnings and messages on or off.

Value

A data frame with information on each parameter (see parameters_type()), and various standardization coefficients for the post-hoc methods (see standardize_parameters()) for the predictor and the response.

See also

Other standardize: standardize_parameters()

Examples

model <- lm(mpg ~ ., data = mtcars)
standardize_info(model)
#>      Parameter      Type        Link Secondary_Parameter EffectSize_Type
#> 1  (Intercept) intercept        Mean                <NA>            <NA>
#> 2          cyl   numeric Association                <NA>               r
#> 3         disp   numeric Association                <NA>               r
#> 4           hp   numeric Association                <NA>               r
#> 5         drat   numeric Association                <NA>               r
#> 6           wt   numeric Association                <NA>               r
#> 7         qsec   numeric Association                <NA>               r
#> 8           vs   numeric Association                <NA>               r
#> 9           am   numeric Association                <NA>               r
#> 10        gear   numeric Association                <NA>               r
#> 11        carb   numeric Association                <NA>               r
#>    Deviation_Response_Basic Deviation_Response_Smart Deviation_Basic
#> 1                  6.026948                 6.026948       0.0000000
#> 2                  6.026948                 6.026948       1.7859216
#> 3                  6.026948                 6.026948     123.9386938
#> 4                  6.026948                 6.026948      68.5628685
#> 5                  6.026948                 6.026948       0.5346787
#> 6                  6.026948                 6.026948       0.9784574
#> 7                  6.026948                 6.026948       1.7869432
#> 8                  6.026948                 6.026948       0.5040161
#> 9                  6.026948                 6.026948       0.4989909
#> 10                 6.026948                 6.026948       0.7378041
#> 11                 6.026948                 6.026948       1.6152000
#>    Deviation_Smart Deviation_SDy
#> 1        0.0000000       0.13455
#> 2        1.7859216       0.13455
#> 3      123.9386938       0.13455
#> 4       68.5628685       0.13455
#> 5        0.5346787       0.13455
#> 6        0.9784574       0.13455
#> 7        1.7869432       0.13455
#> 8        0.5040161       0.13455
#> 9        0.4989909       0.13455
#> 10       0.7378041       0.13455
#> 11       1.6152000       0.13455
standardize_info(model, robust = TRUE)
#>      Parameter      Type        Link Secondary_Parameter EffectSize_Type
#> 1  (Intercept) intercept        Mean                <NA>            <NA>
#> 2          cyl   numeric Association                <NA>               r
#> 3         disp   numeric Association                <NA>               r
#> 4           hp   numeric Association                <NA>               r
#> 5         drat   numeric Association                <NA>               r
#> 6           wt   numeric Association                <NA>               r
#> 7         qsec   numeric Association                <NA>               r
#> 8           vs   numeric Association                <NA>               r
#> 9           am   numeric Association                <NA>               r
#> 10        gear   numeric Association                <NA>               r
#> 11        carb   numeric Association                <NA>               r
#>    Deviation_Response_Basic Deviation_Response_Smart Deviation_Basic
#> 1                   5.41149                  5.41149       0.0000000
#> 2                   5.41149                  5.41149       2.9652000
#> 3                   5.41149                  5.41149     140.4763500
#> 4                   5.41149                  5.41149      77.0952000
#> 5                   5.41149                  5.41149       0.7042350
#> 6                   5.41149                  5.41149       0.7672455
#> 7                   5.41149                  5.41149       1.4158830
#> 8                   5.41149                  5.41149       0.0000000
#> 9                   5.41149                  5.41149       0.0000000
#> 10                  5.41149                  5.41149       1.4826000
#> 11                  5.41149                  5.41149       1.4826000
#>    Deviation_Smart Deviation_SDy
#> 1        0.0000000       0.13455
#> 2        2.9652000       0.13455
#> 3      140.4763500       0.13455
#> 4       77.0952000       0.13455
#> 5        0.7042350       0.13455
#> 6        0.7672455       0.13455
#> 7        1.4158830       0.13455
#> 8        0.0000000       0.13455
#> 9        0.0000000       0.13455
#> 10       1.4826000       0.13455
#> 11       1.4826000       0.13455
standardize_info(model, two_sd = TRUE)
#>      Parameter      Type        Link Secondary_Parameter EffectSize_Type
#> 1  (Intercept) intercept        Mean                <NA>            <NA>
#> 2          cyl   numeric Association                <NA>               r
#> 3         disp   numeric Association                <NA>               r
#> 4           hp   numeric Association                <NA>               r
#> 5         drat   numeric Association                <NA>               r
#> 6           wt   numeric Association                <NA>               r
#> 7         qsec   numeric Association                <NA>               r
#> 8           vs   numeric Association                <NA>               r
#> 9           am   numeric Association                <NA>               r
#> 10        gear   numeric Association                <NA>               r
#> 11        carb   numeric Association                <NA>               r
#>    Deviation_Response_Basic Deviation_Response_Smart Deviation_Basic
#> 1                  6.026948                 6.026948       0.0000000
#> 2                  6.026948                 6.026948       3.5718433
#> 3                  6.026948                 6.026948     247.8773877
#> 4                  6.026948                 6.026948     137.1257370
#> 5                  6.026948                 6.026948       1.0693575
#> 6                  6.026948                 6.026948       1.9569149
#> 7                  6.026948                 6.026948       3.5738865
#> 8                  6.026948                 6.026948       1.0080323
#> 9                  6.026948                 6.026948       0.9979818
#> 10                 6.026948                 6.026948       1.4756081
#> 11                 6.026948                 6.026948       3.2304000
#>    Deviation_Smart Deviation_SDy
#> 1        0.0000000       0.13455
#> 2        3.5718433       0.13455
#> 3      247.8773877       0.13455
#> 4      137.1257370       0.13455
#> 5        1.0693575       0.13455
#> 6        1.9569149       0.13455
#> 7        3.5738865       0.13455
#> 8        1.0080323       0.13455
#> 9        0.9979818       0.13455
#> 10       1.4756081       0.13455
#> 11       3.2304000       0.13455