Skip to contents

Format models of class mira, obtained from mice::width.mids().

Usage

# S3 method for mipo
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

# S3 method for mira
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

Arguments

model

An object of class mira.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method

Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap

Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations

The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize

The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters(). Important:

  • The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.

  • For mixed models, when using methods other than "refit", only the fixed effects will be returned.

  • Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate

Logical, indicating whether or not to exponentiate the the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust

Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

summary

Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

keep

Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop

See keep.

parameters

Deprecated, alias for keep.

verbose

Toggle warnings and messages.

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

  • A covariance matrix

  • A function which returns a covariance matrix (e.g., stats::vcov())

  • A string which indicates the kind of uncertainty estimates to return.

    • Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

    • Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3". See ?clubSandwich::vcovCR.

    • Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.

    • Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args

List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

...

Arguments passed to or from other methods.

Details

model_parameters() for objects of class mira works similar to summary(mice::pool()), i.e. it generates the pooled summary of multiple imputed repeated regression analyses.

Examples

library(parameters)
if (require("mice", quietly = TRUE)) {
  data(nhanes2)
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  model_parameters(fit)
}
#> 
#> Attaching package: ‘mice’
#> The following object is masked from ‘package:stats’:
#> 
#>     filter
#> The following objects are masked from ‘package:base’:
#> 
#>     cbind, rbind
#> 
#>  iter imp variable
#>   1   1  bmi  hyp  chl
#>   1   2  bmi  hyp  chl
#>   1   3  bmi  hyp  chl
#>   1   4  bmi  hyp  chl
#>   1   5  bmi  hyp  chl
#>   2   1  bmi  hyp  chl
#>   2   2  bmi  hyp  chl
#>   2   3  bmi  hyp  chl
#>   2   4  bmi  hyp  chl
#>   2   5  bmi  hyp  chl
#>   3   1  bmi  hyp  chl
#>   3   2  bmi  hyp  chl
#>   3   3  bmi  hyp  chl
#>   3   4  bmi  hyp  chl
#>   3   5  bmi  hyp  chl
#>   4   1  bmi  hyp  chl
#>   4   2  bmi  hyp  chl
#>   4   3  bmi  hyp  chl
#>   4   4  bmi  hyp  chl
#>   4   5  bmi  hyp  chl
#>   5   1  bmi  hyp  chl
#>   5   2  bmi  hyp  chl
#>   5   3  bmi  hyp  chl
#>   5   4  bmi  hyp  chl
#>   5   5  bmi  hyp  chl
#> # Fixed Effects
#> 
#> Parameter   | Coefficient |   SE |          95% CI | Statistic |    df |     p
#> ------------------------------------------------------------------------------
#> (Intercept) |       19.07 | 4.55 | [  8.40, 29.73] |      4.19 |  7.35 | 0.004
#> age40-59    |       -4.77 | 2.07 | [ -9.32, -0.22] |     -2.31 | 10.95 | 0.041
#> age60-99    |       -5.89 | 2.49 | [-11.62, -0.17] |     -2.37 |  8.10 | 0.045
#> hypyes      |        2.34 | 2.42 | [ -3.23,  7.91] |      0.97 |  8.13 | 0.362
#> chl         |        0.05 | 0.03 | [ -0.02,  0.12] |      1.84 |  5.76 | 0.118
#> 
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
#>   using a Wald distribution approximation.
if (FALSE) {
# model_parameters() also works for models that have no "tidy"-method in mice
if (require("mice", quietly = TRUE) && require("gee", quietly = TRUE)) {
  data(warpbreaks)
  set.seed(1234)
  warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
  imp <- mice(warpbreaks)
  fit <- with(data = imp, expr = gee(breaks ~ tension, id = wool))

  # does not work:
  # summary(pool(fit))

  model_parameters(fit)
}
}



# and it works with pooled results
if (require("mice")) {
  data("nhanes2")
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  pooled <- pool(fit)

  model_parameters(pooled)
}
#> 
#>  iter imp variable
#>   1   1  bmi  hyp  chl
#>   1   2  bmi  hyp  chl
#>   1   3  bmi  hyp  chl
#>   1   4  bmi  hyp  chl
#>   1   5  bmi  hyp  chl
#>   2   1  bmi  hyp  chl
#>   2   2  bmi  hyp  chl
#>   2   3  bmi  hyp  chl
#>   2   4  bmi  hyp  chl
#>   2   5  bmi  hyp  chl
#>   3   1  bmi  hyp  chl
#>   3   2  bmi  hyp  chl
#>   3   3  bmi  hyp  chl
#>   3   4  bmi  hyp  chl
#>   3   5  bmi  hyp  chl
#>   4   1  bmi  hyp  chl
#>   4   2  bmi  hyp  chl
#>   4   3  bmi  hyp  chl
#>   4   4  bmi  hyp  chl
#>   4   5  bmi  hyp  chl
#>   5   1  bmi  hyp  chl
#>   5   2  bmi  hyp  chl
#>   5   3  bmi  hyp  chl
#>   5   4  bmi  hyp  chl
#>   5   5  bmi  hyp  chl
#> # Fixed Effects
#> 
#> Parameter   | Coefficient |   SE |          95% CI | Statistic |    df |     p
#> ------------------------------------------------------------------------------
#> (Intercept) |       19.07 | 4.55 | [  8.40, 29.73] |      4.19 |  7.35 | 0.004
#> age40-59    |       -4.77 | 2.07 | [ -9.32, -0.22] |     -2.31 | 10.95 | 0.041
#> age60-99    |       -5.89 | 2.49 | [-11.62, -0.17] |     -2.37 |  8.10 | 0.045
#> hypyes      |        2.34 | 2.42 | [ -3.23,  7.91] |      0.97 |  8.13 | 0.362
#> chl         |        0.05 | 0.03 | [ -0.02,  0.12] |      1.84 |  5.76 | 0.118
#> 
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
#>   using a Wald distribution approximation.