This function attempts to return, or compute, p-values of a model's parameters.
Usage
p_value(model, ...)
# Default S3 method
p_value(
model,
dof = NULL,
method = NULL,
component = "all",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...
)
# S3 method for class 'emmGrid'
p_value(model, ci = 0.95, adjust = "none", ...)
Arguments
- model
A statistical model.
- ...
Additional arguments
- dof
Number of degrees of freedom to be used when calculating confidence intervals. If
NULL
(default), the degrees of freedom are retrieved by callinginsight::get_df()
with approximation method defined inmethod
. If notNULL
, use this argument to override the default degrees of freedom used to compute confidence intervals.- method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class):
"residual"
,"normal"
,"likelihood"
,"satterthwaite"
,"kenward"
,"wald"
,"profile"
,"boot"
,"uniroot"
,"ml1"
,"betwithin"
,"hdi"
,"quantile"
,"ci"
,"eti"
,"si"
,"bci"
, or"bcai"
. See section Confidence intervals and approximation of degrees of freedom inmodel_parameters()
for further details.- component
Model component for which parameters should be shown. See the documentation for your object's class in
model_parameters()
orp_value()
for further details, or see section Model components.- vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.
A covariance matrix
A function which returns a covariance matrix (e.g.,
stats::vcov()
)A string which indicates the kind of uncertainty estimates to return.
Heteroskedasticity-consistent:
"HC"
,"HC0"
,"HC1"
,"HC2"
,"HC3"
,"HC4"
,"HC4m"
,"HC5"
. See?sandwich::vcovHC
Cluster-robust:
"CR"
,"CR0"
,"CR1"
,"CR1p"
,"CR1S"
,"CR2"
,"CR3"
. See?clubSandwich::vcovCR
Bootstrap:
"BS"
,"xy"
,"residual"
,"wild"
,"mammen"
,"fractional"
,"jackknife"
,"norm"
,"webb"
. See?sandwich::vcovBS
Other
sandwich
package functions:"HAC"
,"PC"
,"CL"
,"OPG"
,"PL"
.
- vcov_args
List of arguments to be passed to the function identified by the
vcov
argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g.,?sandwich::vcovHAC
) to see the list of available arguments. If no estimation type (argumenttype
) is given, the default type for"HC"
equals the default from the sandwich package; for type"CR"
, the default is set to"CR3"
.- verbose
Toggle warnings and messages.
- ci
Confidence Interval (CI) level. Default to
0.95
(95%
).- adjust
Character value naming the method used to adjust p-values or confidence intervals. See
?emmeans::summary.emmGrid
for details.
Value
A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
Details
For Bayesian models, the p-values corresponds to the probability of
direction (bayestestR::p_direction()
), which is converted to a p-value
using bayestestR::convert_pd_to_p()
.
Confidence intervals and approximation of degrees of freedom
There are different ways of approximating the degrees of freedom depending
on different assumptions about the nature of the model and its sampling
distribution. The ci_method
argument modulates the method for computing degrees
of freedom (df) that are used to calculate confidence intervals (CI) and the
related p-values. Following options are allowed, depending on the model
class:
Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.
"wald"
:
Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.
"normal"
Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.
"residual"
Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.
Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.
Several approximate methods for computing df are available, but you should
also consider instead using profile likelihood ("profile"
) or bootstrap ("boot"
)
CIs and p-values instead.
"satterthwaite"
Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.
"kenward"
Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.
"ml1"
Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See
ci_ml1()
.
"betwithin"
Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See
ci_betwithin()
.
Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \(\chi\)-squared distribution to compute CIs and p-values.
"profile"
Applies to non-Bayesian models of class
glm
,polr
,merMod
orglmmTMB
. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
"uniroot"
Applies to non-Bayesian models of class
glmmTMB
. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
Methods for bootstrapped or Bayesian models:
Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter's sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.
For Bayesian models, inference is based on drawing samples from the model posterior distribution.
"quantile"
(or "eti"
)
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::eti()
.
"hdi"
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::hdi()
.
"bci"
(or "bcai"
)
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::bci()
.
"si"
Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See
bayestestR::si()
.
"boot"
Applies to non-Bayesian models of class
merMod
. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution) (note: this might change in a future update!).
For all iteration-based methods other than "boot"
("hdi"
, "quantile"
, "ci"
, "eti"
, "si"
, "bci"
, "bcai"
),
p-values are based on the probability of direction (bayestestR::p_direction()
),
which is converted into a p-value using bayestestR::pd_to_p()
.
Model components
Possible values for the component
argument depend on the model class.
Following are valid options:
"all"
: returns all model components, applies to all models, but will only have an effect for models with more than just the conditional model component."conditional"
: only returns the conditional component, i.e. "fixed effects" terms from the model. Will only have an effect for models with more than just the conditional model component."smooth_terms"
: returns smooth terms, only applies to GAMs (or similar models that may contain smooth terms)."zero_inflated"
(or"zi"
): returns the zero-inflation component."dispersion"
: returns the dispersion model component. This is common for models with zero-inflation or that can model the dispersion parameter."instruments"
: for instrumental-variable or some fixed effects regression, returns the instruments."nonlinear"
: for non-linear models (like models of classnlmerMod
ornls
), returns staring estimates for the nonlinear parameters."correlation"
: for models with correlation-component, likegls
, the variables used to describe the correlation structure are returned.
Special models
Some model classes also allow rather uncommon options. These are:
mhurdle:
"infrequent_purchase"
,"ip"
, and"auxiliary"
BGGM:
"correlation"
and"intercept"
BFBayesFactor, glmx:
"extra"
averaging:
"conditional"
and"full"
mjoint:
"survival"
mfx:
"precision"
,"marginal"
betareg, DirichletRegModel:
"precision"
mvord:
"thresholds"
and"correlation"
clm2:
"scale"
selection:
"selection"
,"outcome"
, and"auxiliary"
lavaan: One or more of
"regression"
,"correlation"
,"loading"
,"variance"
,"defined"
, or"mean"
. Can also be"all"
to include all components.
For models of class brmsfit
(package brms), even more options are
possible for the component
argument, which are not all documented in detail
here.
Examples
data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)
#> Parameter p
#> 1 (Intercept) 1.005180e-11
#> 2 Sepal.Length 1.121002e-28
#> 3 Speciesversicolor 9.645641e-67
#> 4 Speciesvirginica 4.917626e-71
data("bioChemists", package = "pscl")
model <- pscl::zeroinfl(
art ~ fem + mar + kid5 | kid5 + phd,
data = bioChemists
)
p_value(model)
#> Parameter p Component
#> 1 count_(Intercept) 3.069445e-43 conditional
#> 2 count_femWomen 5.108245e-06 conditional
#> 3 count_marMarried 9.587350e-02 conditional
#> 4 count_kid5 8.174027e-03 conditional
#> 5 zero_(Intercept) 4.463504e-02 zero_inflated
#> 6 zero_kid5 4.146225e-01 zero_inflated
#> 7 zero_phd 2.485159e-02 zero_inflated
p_value(model, component = "zi")
#> Parameter p Component
#> 5 zero_(Intercept) 0.04463504 zero_inflated
#> 6 zero_kid5 0.41462254 zero_inflated
#> 7 zero_phd 0.02485159 zero_inflated