Parameters from Bayesian Models
Source:R/methods_base.R
, R/methods_brms.R
model_parameters.brmsfit.Rd
Model parameters from Bayesian models. This function internally calls
bayestestR::describe_posterior()
to get the relevant information for
the output.
Usage
# S3 method for class 'data.frame'
model_parameters(
model,
as_draws = FALSE,
exponentiate = FALSE,
verbose = TRUE,
...
)
# S3 method for class 'brmsfit'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = "fixed",
component = "all",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
Arguments
- model
Bayesian model (including SEM from blavaan. May also be a data frame with posterior samples, however,
as_draws
must be set toTRUE
(else, for data framesNULL
is returned).- as_draws
Logical, if
TRUE
andmodel
is of classdata.frame
, the data frame is treated as posterior samples and handled similar to Bayesian models. All arguments in...
are passed tomodel_parameters.draws()
.- exponentiate
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE
for models with log-transformed response values. For models with a log-transformed response variable, whenexponentiate = TRUE
, a one-unit increase in the predictor is associated with multiplying the outcome by that predictor's coefficient. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. Forcompare_parameters()
,exponentiate = "nongaussian"
will only exponentiate coefficients from non-Gaussian families.- verbose
Toggle warnings and messages.
- ...
Arguments passed to or from other methods. For instance, when
bootstrap = TRUE
, arguments liketype
orparallel
are passed down tobootstrap_model()
.Further non-documented arguments are:
digits
,p_digits
,ci_digits
andfooter_digits
to set the number of digits for the output.groups
can be used to group coefficients. These arguments will be passed to the print-method, or can directly be used inprint()
, see documentation inprint.parameters_model()
.If
s_value = TRUE
, the p-value will be replaced by the S-value in the output (cf. Rafi and Greenland 2020).pd
adds an additional column with the probability of direction (seebayestestR::p_direction()
for details). Furthermore, see 'Examples' for this function.For developers, whose interest mainly is to get a "tidy" data frame of model summaries, it is recommended to set
pretty_names = FALSE
to speed up computation of the summary table.
- centrality
The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options:
"median"
,"mean"
,"MAP"
(seemap_estimate()
),"trimmed"
(which is justmean(x, trim = threshold)
),"mode"
or"all"
.- dispersion
Logical, if
TRUE
, computes indices of dispersion related to the estimate(s) (SD
andMAD
formean
andmedian
, respectively). Dispersion is not available for"MAP"
or"mode"
centrality indices.- ci
Credible Interval (CI) level. Default to
0.95
(95%
). SeebayestestR::ci()
for further details.- ci_method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class):
"residual"
,"normal"
,"likelihood"
,"satterthwaite"
,"kenward"
,"wald"
,"profile"
,"boot"
,"uniroot"
,"ml1"
,"betwithin"
,"hdi"
,"quantile"
,"ci"
,"eti"
,"si"
,"bci"
, or"bcai"
. See section Confidence intervals and approximation of degrees of freedom inmodel_parameters()
for further details. Whenci_method=NULL
, in most cases"wald"
is used then.- test
The indices of effect existence to compute. Character (vector) or list with one or more of these options:
"p_direction"
(or"pd"
),"rope"
,"p_map"
,"equivalence_test"
(or"equitest"
),"bayesfactor"
(or"bf"
) or"all"
to compute all tests. For each "test", the corresponding bayestestR function is called (e.g.rope()
orp_direction()
) and its results included in the summary output.- rope_range
ROPE's lower and higher bounds. Should be a vector of two values (e.g.,
c(-0.1, 0.1)
),"default"
or a list of numeric vectors of the same length as numbers of parameters. If"default"
, the bounds are set tox +- 0.1*SD(response)
.- rope_ci
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
- bf_prior
Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored.
- diagnostic
Diagnostic metrics to compute. Character (vector) or list with one or more of these options:
"ESS"
,"Rhat"
,"MCSE"
or"all"
.- priors
Add the prior used for each parameter.
- effects
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
- component
Which type of parameters to return, such as parameters for the conditional model, the zero-inflation part of the model, the dispersion term, or other auxiliary parameters be returned? Applies to models with zero-inflation and/or dispersion formula, or if parameters such as
sigma
should be included. May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model. There are three convenient shortcuts:component = "all"
returns all possible parameters. Ifcomponent = "location"
, location parameters such asconditional
,zero_inflated
, orsmooth_terms
, are returned (everything that are fixed or random effects - depending on theeffects
argument - but no auxiliary parameters). Forcomponent = "distributional"
(or"auxiliary"
), components likesigma
,dispersion
, orbeta
(and other auxiliary parameters) are returned.- standardize
The method used for standardizing the parameters. Can be
NULL
(default; no standardization),"refit"
(for re-fitting the model on standardized data) or one of"basic"
,"posthoc"
,"smart"
,"pseudo"
. See 'Details' instandardize_parameters()
. Importantly:The
"refit"
method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either usestandardize="basic"
or standardize the data withdatawizard::standardize(force=TRUE)
before fitting the model.For mixed models, when using methods other than
"refit"
, only the fixed effects will be standardized.Robust estimation (i.e.,
vcov
set to a value other thanNULL
) of standardized parameters only works whenstandardize="refit"
.
- group_level
Logical, for multilevel models (i.e. models with random effects) and when
effects = "all"
oreffects = "random"
, include the parameters for each group level from random effects. Ifgroup_level = FALSE
(the default), only information on SD and COR are shown.- keep
Character containing a regular expression pattern that describes the parameters that should be included (for
keep
) or excluded (fordrop
) in the returned data frame.keep
may also be a named list of regular expressions. All non-matching parameters will be removed from the output. Ifkeep
is a character vector, every parameter name in the "Parameter" column that matches the regular expression inkeep
will be selected from the returned data frame (and vice versa, all parameter names matchingdrop
will be excluded). Furthermore, ifkeep
has more than one element, these will be merged with anOR
operator into a regular expression pattern like this:"(one|two|three)"
. Ifkeep
is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects wheremodel_parameters()
returns multiple columns with parameter components, like inmodel_parameters.lavaan()
. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the$Parameter
column of the parameters table to get the exact parameter names.- drop
See
keep
.
Note
When standardize = "refit"
, columns diagnostic
, bf_prior
and
priors
refer to the original model
. If model
is a data frame,
arguments diagnostic
, bf_prior
and priors
are ignored.
There is also a
plot()
-method
implemented in the see-package.
Confidence intervals and approximation of degrees of freedom
There are different ways of approximating the degrees of freedom depending
on different assumptions about the nature of the model and its sampling
distribution. The ci_method
argument modulates the method for computing degrees
of freedom (df) that are used to calculate confidence intervals (CI) and the
related p-values. Following options are allowed, depending on the model
class:
Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.
"wald"
:
Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.
"normal"
Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.
"residual"
Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.
Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.
Several approximate methods for computing df are available, but you should
also consider instead using profile likelihood ("profile"
) or bootstrap ("boot"
)
CIs and p-values instead.
"satterthwaite"
Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.
"kenward"
Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.
"ml1"
Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See
ci_ml1()
.
"betwithin"
Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See
ci_betwithin()
.
Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \(\chi\)-squared distribution to compute CIs and p-values.
"profile"
Applies to non-Bayesian models of class
glm
,polr
,merMod
orglmmTMB
. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
"uniroot"
Applies to non-Bayesian models of class
glmmTMB
. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
Methods for bootstrapped or Bayesian models:
Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter's sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.
For Bayesian models, inference is based on drawing samples from the model posterior distribution.
"quantile"
(or "eti"
)
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::eti()
.
"hdi"
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::hdi()
.
"bci"
(or "bcai"
)
Applies to all models (including Bayesian models). For non-Bayesian models, only applies if
bootstrap = TRUE
. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. SeebayestestR::bci()
.
"si"
Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See
bayestestR::si()
.
"boot"
Applies to non-Bayesian models of class
merMod
. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution) (note: this might change in a future update!).
For all iteration-based methods other than "boot"
("hdi"
, "quantile"
, "ci"
, "eti"
, "si"
, "bci"
, "bcai"
),
p-values are based on the probability of direction (bayestestR::p_direction()
),
which is converted into a p-value using bayestestR::pd_to_p()
.
Model components
Possible values for the component
argument depend on the model class.
Following are valid options:
"all"
: returns all model components, applies to all models, but will only have an effect for models with more than just the conditional model component."conditional"
: only returns the conditional component, i.e. "fixed effects" terms from the model. Will only have an effect for models with more than just the conditional model component."smooth_terms"
: returns smooth terms, only applies to GAMs (or similar models that may contain smooth terms)."zero_inflated"
(or"zi"
): returns the zero-inflation component."dispersion"
: returns the dispersion model component. This is common for models with zero-inflation or that can model the dispersion parameter."instruments"
: for instrumental-variable or some fixed effects regression, returns the instruments."nonlinear"
: for non-linear models (like models of classnlmerMod
ornls
), returns staring estimates for the nonlinear parameters."correlation"
: for models with correlation-component, likegls
, the variables used to describe the correlation structure are returned.
Special models
Some model classes also allow rather uncommon options. These are:
mhurdle:
"infrequent_purchase"
,"ip"
, and"auxiliary"
BGGM:
"correlation"
and"intercept"
BFBayesFactor, glmx:
"extra"
averaging:
"conditional"
and"full"
mjoint:
"survival"
mfx:
"precision"
,"marginal"
betareg, DirichletRegModel:
"precision"
mvord:
"thresholds"
and"correlation"
clm2:
"scale"
selection:
"selection"
,"outcome"
, and"auxiliary"
lavaan: One or more of
"regression"
,"correlation"
,"loading"
,"variance"
,"defined"
, or"mean"
. Can also be"all"
to include all components.
For models of class brmsfit
(package brms), even more options are
possible for the component
argument, which are not all documented in detail
here.
See also
insight::standardize_names()
to rename columns into a consistent,
standardized naming scheme.
Examples
# \donttest{
library(parameters)
if (require("rstanarm")) {
model <- suppressWarnings(stan_glm(
Sepal.Length ~ Petal.Length * Species,
data = iris, iter = 500, refresh = 0
))
model_parameters(model)
}
#> Parameter | Median | 95% CI | pd | Rhat
#> -------------------------------------------------------------------------
#> (Intercept) | 4.12 | [ 3.45, 4.88] | 100% | 1.023
#> Petal.Length | 0.61 | [ 0.08, 1.06] | 99.30% | 1.025
#> Speciesversicolor | -1.65 | [-2.86, -0.59] | 100% | 1.012
#> Speciesvirginica | -3.04 | [-4.20, -1.85] | 100% | 1.004
#> Petal.Length:Speciesversicolor | 0.20 | [-0.28, 0.74] | 79.90% | 1.024
#> Petal.Length:Speciesvirginica | 0.38 | [-0.10, 0.93] | 93.80% | 1.018
#>
#> Parameter | ESS | Prior
#> ---------------------------------------------------------------
#> (Intercept) | 159.00 | Normal (5.84 +- 2.07)
#> Petal.Length | 156.00 | Normal (0.00 +- 1.17)
#> Speciesversicolor | 271.00 | Normal (0.00 +- 4.38)
#> Speciesvirginica | 426.00 | Normal (0.00 +- 4.38)
#> Petal.Length:Speciesversicolor | 159.00 | Normal (0.00 +- 1.02)
#> Petal.Length:Speciesvirginica | 181.00 | Normal (0.00 +- 0.78)
#>
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed)
#> computed using a MCMC distribution approximation.
# }