
Package index
-
model_performance()performance() - Model Performance
-
model_performance(<fa>) - Performance of FA / PCA models
-
model_performance(<ivreg>) - Performance of instrumental variable regression models
-
model_performance(<kmeans>) - Model summary for k-means clustering
-
model_performance(<lavaan>) - Performance of lavaan SEM / CFA Models
-
model_performance(<lm>) - Performance of Regression Models
-
model_performance(<merMod>) - Performance of Mixed Models
-
model_performance(<rma>) - Performance of Meta-Analysis Models
-
model_performance(<stanreg>)model_performance(<BFBayesFactor>) - Performance of Bayesian Models
-
binned_residuals() - Binned residuals for binomial logistic regression
-
check_autocorrelation() - Check model for independence of residuals.
-
check_clusterstructure() - Check suitability of data for clustering
-
check_collinearity()multicollinearity()check_concurvity() - Check for multicollinearity of model terms
-
check_convergence() - Convergence test for mixed effects models
-
check_dag()as.dag() - Check correct model adjustment for identifying causal effects
-
check_distribution() - Classify the distribution of a model-family using machine learning
-
check_factorstructure()check_kmo()check_sphericity_bartlett() - Check suitability of data for Factor Analysis (FA) with Bartlett's Test of Sphericity and KMO
-
check_group_variation()summary(<check_group_variation>) - Check variables for within- and/or between-group variation
-
check_heterogeneity_bias() - Check model predictor for heterogeneity bias (Deprecated)
-
check_heteroscedasticity()check_heteroskedasticity() - Check model for (non-)constant error variance
-
check_homogeneity() - Check model for homogeneity of variances
-
check_itemscale() - Describe Properties of Item Scales
-
check_model() - Visual check of model assumptions
-
check_multimodal() - Check if a distribution is unimodal or multimodal
-
check_normality() - Check model for (non-)normality of residuals.
-
check_outliers() - Outliers detection (check for influential observations)
-
check_overdispersion() - Check overdispersion (and underdispersion) of GL(M)M's
-
check_predictions() - Posterior predictive checks
-
check_residuals() - Check distribution of simulated quantile residuals
-
check_singularity() - Check mixed models for boundary fits
-
check_sphericity() - Check model for violation of sphericity
-
check_symmetry() - Check distribution symmetry
-
check_zeroinflation() - Check for zero-inflation in count models
-
simulate_residuals()residuals(<performance_simres>) - Simulate randomized quantile residuals from a model
-
performance_accuracy() - Accuracy of predictions from model fit
-
performance_aicc()performance_aic() - Compute the AIC or second-order AIC
-
performance_cv() - Cross-validated model performance
-
performance_hosmer() - Hosmer-Lemeshow goodness-of-fit test
-
performance_logloss() - Log Loss
-
performance_mae()mae() - Mean Absolute Error of Models
-
performance_mse()mse() - Mean Square Error of Linear Models
-
performance_pcp() - Percentage of Correct Predictions
-
performance_reliability()performance_dvour() - Random Effects Reliability
-
performance_rmse()rmse() - Root Mean Squared Error
-
performance_roc() - Simple ROC curve
-
performance_rse() - Residual Standard Error for Linear Models
-
performance_score() - Proper Scoring Rules
-
icc()variance_decomposition() - Intraclass Correlation Coefficient (ICC)
-
looic() - LOO-related Indices for Bayesian regressions.
-
check_itemscale() - Describe Properties of Item Scales
-
cronbachs_alpha()item_alpha() - Cronbach's Alpha for Items or Scales
-
item_difficulty() - Difficulty of Questionnaire Items
-
item_discrimination()item_totalcor() - Discrimination and Item-Total Correlation of Questionnaire Items
-
item_intercor() - Mean Inter-Item-Correlation
-
item_omega() - McDonald's Omega for Items or Scales
-
item_reliability() - Reliability Test for Items or Scales
-
item_split_half() - Split-Half Reliability
-
compare_performance() - Compare performance of different models
-
test_bf()test_likelihoodratio()test_lrt()test_performance()test_vuong()test_wald() - Test if models are different
-
r2() - Compute the model's R2
-
r2_bayes()r2_posterior() - Bayesian R2
-
r2_coxsnell() - Cox & Snell's R2
-
r2_efron() - Efron's R2
-
r2_ferrari() - Ferrari's and Cribari-Neto's R2
-
r2_kullback() - Kullback-Leibler R2
-
r2_loo()r2_loo_posterior() - LOO-adjusted R2
-
r2_mcfadden() - McFadden's R2
-
r2_mckelvey() - McKelvey & Zavoinas R2
-
r2_mlm() - Multivariate R2
-
r2_nagelkerke() - Nagelkerke's R2
-
r2_nakagawa() - Nakagawa's R2 for mixed models
-
r2_somers() - Somers' Dxy rank correlation for binary outcomes
-
r2_tjur() - Tjur's R2 - coefficient of determination (D)
-
r2_xu() - Xu' R2 (Omega-squared)
-
r2_zeroinflated() - R2 for models with zero-inflation
-
display(<performance_model>)print(<performance_model>)print_md(<performance_model>)print_md(<compare_performance>) - Print tables in different output formats
-
reexportsdisplayprint_mdprint_html - Objects exported from other packages
-
classify_distribution - Classify the distribution of a model-family using machine learning