check_residuals()
checks generalized linear (mixed) models for uniformity
of randomized quantile residuals, which can be used to identify typical model
misspecification problems, such as over/underdispersion, zero-inflation, and
residual spatial and temporal autocorrelation.
Usage
check_residuals(x, ...)
# Default S3 method
check_residuals(x, alternative = c("two.sided", "less", "greater"), ...)
Arguments
- x
An object returned by
simulate_residuals()
orDHARMa::simulateResiduals()
.- ...
Passed down to
stats::ks.test()
.- alternative
A character string specifying the alternative hypothesis. See
stats::ks.test()
for details.
Details
Uniformity of residuals is checked using a Kolmogorov-Smirnov test.
There is a plot()
method to visualize the distribution of the residuals.
The test for uniformity basically tests to which extent the observed values
deviate from the model expectations (i.e. simulated values). In this sense,
the check_residuals()
function has similar goals like check_predictions()
.
Tests based on simulated residuals
For certain models, resp. model from certain families, tests like
check_zeroinflation()
or check_overdispersion()
are based on
simulated residuals. These are usually more accurate for such tests than
the traditionally used Pearson residuals. However, when simulating from more
complex models, such as mixed models or models with zero-inflation, there are
several important considerations. simulate_residuals()
relies on
DHARMa::simulateResiduals()
, and additional arguments specified in ...
are passed further down to that function. The defaults in DHARMa are set on
the most conservative option that works for all models. However, in many
cases, the help advises to use different settings in particular situations
or for particular models. It is recommended to read the 'Details' in
?DHARMa::simulateResiduals
closely to understand the implications of the
simulation process and which arguments should be modified to get the most
accurate results.
See also
simulate_residuals()
, check_zeroinflation()
,
check_overdispersion()
and check_predictions()
. See also
see::plot.see_performance_simres()
for options to customize the plot.
Examples
dat <- DHARMa::createData(sampleSize = 100, overdispersion = 0.5, family = poisson())
m <- glm(observedResponse ~ Environment1, family = poisson(), data = dat)
res <- simulate_residuals(m)
check_residuals(res)
#> Warning: Non-uniformity of simulated residuals detected (p = 0.021).
#>