This function calculates a simple ROC curves of x/y coordinates based on response and predictions of a binomial model.
It returns the area under the curve (AUC) as a percentage, which corresponds to the probability that a randomly chosen observation of "condition 1" is correctly classified by the model as having a higher probability of being "condition 1" than a randomly chosen "condition 2" observation.
Applying as.data.frame()
to the output returns a data frame containing the
following:
Sensitivity
(that actually corresponds to1 - Specificity
): It is the False Positive Rate.Sensitivity
: It is the True Positive Rate, which is the proportion of correctly classified "condition 1" observations.
Arguments
- x
A numeric vector, representing the outcome (0/1), or a model with binomial outcome.
- ...
One or more models with binomial outcome. In this case,
new_data
is ignored.- predictions
If
x
is numeric, a numeric vector of same length asx
, representing the actual predicted values.- new_data
If
x
is a model, a data frame that is passed topredict()
asnewdata
-argument. IfNULL
, the ROC for the full model is calculated.
Value
A data frame with three columns, the x/y-coordinate pairs for the ROC
curve (Sensitivity
and Specificity
), and a column with the
model name.
Note
There is also a plot()
-method
implemented in the see-package.
Examples
library(bayestestR)
data(iris)
set.seed(123)
iris$y <- rbinom(nrow(iris), size = 1, .3)
folds <- sample(nrow(iris), size = nrow(iris) / 8, replace = FALSE)
test_data <- iris[folds, ]
train_data <- iris[-folds, ]
model <- glm(y ~ Sepal.Length + Sepal.Width, data = train_data, family = "binomial")
as.data.frame(performance_roc(model, new_data = test_data))
#> Sensitivity Specificity Model
#> 1 0.0000000 0.00000000 Model 1
#> 2 0.1428571 0.00000000 Model 1
#> 3 0.1428571 0.09090909 Model 1
#> 4 0.1428571 0.18181818 Model 1
#> 5 0.1428571 0.27272727 Model 1
#> 6 0.1428571 0.36363636 Model 1
#> 7 0.2857143 0.36363636 Model 1
#> 8 0.2857143 0.45454545 Model 1
#> 9 0.2857143 0.54545455 Model 1
#> 10 0.2857143 0.63636364 Model 1
#> 11 0.2857143 0.72727273 Model 1
#> 12 0.4285714 0.72727273 Model 1
#> 13 0.5714286 0.72727273 Model 1
#> 14 0.5714286 0.81818182 Model 1
#> 15 0.7142857 0.81818182 Model 1
#> 16 0.8571429 0.81818182 Model 1
#> 17 0.8571429 0.90909091 Model 1
#> 18 1.0000000 0.90909091 Model 1
#> 19 1.0000000 1.00000000 Model 1
#> 20 1.0000000 1.00000000 Model 1
as.numeric(performance_roc(model))
#> [1] 0.540825
roc <- performance_roc(model, new_data = test_data)
area_under_curve(roc$Specificity, roc$Sensitivity)
#> [1] 0.3766234
if (interactive()) {
m1 <- glm(y ~ Sepal.Length + Sepal.Width, data = iris, family = "binomial")
m2 <- glm(y ~ Sepal.Length + Petal.Width, data = iris, family = "binomial")
m3 <- glm(y ~ Sepal.Length + Species, data = iris, family = "binomial")
performance_roc(m1, m2, m3)
# if you have `see` package installed, you can also plot comparison of
# ROC curves for different models
if (require("see")) plot(performance_roc(m1, m2, m3))
}