Compute various measures of internal consistencies for tests or item-scales of questionnaires.

## Usage

item_difficulty(x, maximum_value = NULL)

## Arguments

x

Depending on the function, x may be a matrix as returned by the cor()-function, or a data frame with items (e.g. from a test or questionnaire).

maximum_value

Numeric value, indicating the maximum value of an item. If NULL (default), the maximum is taken from the maximum value of all columns in x (assuming that the maximum value at least appears once in the data). If NA, each item's maximum value is taken as maximum. If the required maximum value is not present in the data, specify the theoreritcal maximum using maximum_value.

## Value

A data frame with three columns: The name(s) of the item(s), the item difficulties for each item, and the ideal item difficulty.

## Details

Item difficutly of an item is defined as the quotient of the sum actually achieved for this item of all and the maximum achievable score. This function calculates the item difficulty, which should range between 0.2 and 0.8. Lower values are a signal for more difficult items, while higher values close to one are a sign for easier items. The ideal value for item difficulty is p + (1 - p) / 2, where p = 1 / max(x). In most cases, the ideal item difficulty lies between 0.5 and 0.8.

## References

• Bortz, J., and Döring, N. (2006). Quantitative Methoden der Datenerhebung. In J. Bortz and N. Döring, Forschungsmethoden und Evaluation. Springer: Berlin, Heidelberg: 137–293

• Kelava A, Moosbrugger H (2020). Deskriptivstatistische Itemanalyse und Testwertbestimmung. In: Moosbrugger H, Kelava A, editors. Testtheorie und Fragebogenkonstruktion. Berlin, Heidelberg: Springer, 143–158

## Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_difficulty(x)
#> Item Difficulty
#>
#> Item | Difficulty | Ideal
#> -------------------------
#> cyl  |       0.02 |  0.50
#> gear |       0.01 |  0.50
#> carb |       0.01 |  0.50
#> hp   |       0.44 |  0.50