Skip to contents

This vignette can be referred to by citing the package:

citation("see")
#> To cite package 'see' in publications use:
#> 
#>   Lüdecke et al., (2021). see: An R Package for Visualizing Statistical
#>   Models. Journal of Open Source Software, 6(64), 3393.
#>   https://doi.org/10.21105/joss.03393
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {{see}: An {R} Package for Visualizing Statistical Models},
#>     author = {Daniel Lüdecke and Indrajeet Patil and Mattan S. Ben-Shachar and Brenton M. Wiernik and Philip Waggoner and Dominique Makowski},
#>     journal = {Journal of Open Source Software},
#>     year = {2021},
#>     volume = {6},
#>     number = {64},
#>     pages = {3393},
#>     doi = {10.21105/joss.03393},
#>   }

Before we start, we create some data sets with three, four and five groups; one is useful to demonstrate line-geoms, the iris-dataset is used for point-geoms.

library(ggplot2)
library(see)

data(iris)
iris$group4 <- as.factor(sample(1:4, size = nrow(iris), replace = TRUE))
iris$group5 <- as.factor(sample(1:5, size = nrow(iris), replace = TRUE))

d1 <- data.frame(
  x = rep(1:20, 3),
  y = c(
    seq(2, 4, length.out = 20),
    seq(3, 6, length.out = 20),
    seq(5, 3, length.out = 20)
  ),
  group = rep(factor(1:3), each = 20)
)

d2 <- data.frame(
  x = rep(1:20, 4),
  y = c(
    seq(2, 4, length.out = 20),
    seq(3, 6, length.out = 20),
    seq(5, 3, length.out = 20),
    seq(4, 2.5, length.out = 20)
  ),
  group = rep(factor(1:4), each = 20)
)

d3 <- data.frame(
  x = rep(1:20, 5),
  y = c(
    seq(2, 4, length.out = 20),
    seq(3, 6, length.out = 20),
    seq(5, 3, length.out = 20),
    seq(4, 2.5, length.out = 20),
    seq(3.5, 4.5, length.out = 20)
  ),
  group = rep(factor(1:5), each = 20)
)

theme_set(theme_modern(legend.position = "bottom"))

The see Color Scales

There are several different color scales available in the see package, most of them having some pre-defined palettes like "full", "ice", "rainbow", "complement", "contrast", or "light" - exceptions are the pizza color scale and bluebrown color scale.

In this vignettes, we show the default palettes for the different color scales to give an impression how these scales work with different type of data.

Social Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_social()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_social()

plots(p1, p2, n_rows = 1)

Social Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_social()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_social()

plots(p1, p2, n_rows = 1)

Social Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_social()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_social()

plots(p1, p2, n_rows = 1)

Material Colors

Material Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_material()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_material()

plots(p1, p2, n_rows = 1)

Material Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_material()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_material()

plots(p1, p2, n_rows = 1)

Material Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_material()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_material()

plots(p1, p2, n_rows = 1)

Flat Colors

Flat Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_flat()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_flat()

plots(p1, p2, n_rows = 1)

Flat Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_flat()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_flat()

plots(p1, p2, n_rows = 1)

Flat Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_flat()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_flat()

plots(p1, p2, n_rows = 1)

Metro Colors

Metro Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_metro()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_metro()

plots(p1, p2, n_rows = 1)

Metro Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_metro()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_metro()

plots(p1, p2, n_rows = 1)

Metro Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_metro()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_metro()

plots(p1, p2, n_rows = 1)

See Colors

See Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_see()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_see()

plots(p1, p2, n_rows = 1)

See Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_see()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_see()

plots(p1, p2, n_rows = 1)

See Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_see()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_see()

plots(p1, p2, n_rows = 1)

Pizza Colors

Pizza Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_pizza()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_pizza()

plots(p1, p2, n_rows = 1)

Pizza Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_pizza()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_pizza()

plots(p1, p2, n_rows = 1)

Pizza Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_pizza()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_pizza()

plots(p1, p2, n_rows = 1)

Bluebrown Colors

Bluebrown Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_bluebrown()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_bluebrown()

plots(p1, p2, n_rows = 1)

Bluebrown Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_bluebrown()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_bluebrown()

plots(p1, p2, n_rows = 1)

Bluebrown Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_bluebrown()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_bluebrown()

plots(p1, p2, n_rows = 1)

Okabe-Ito Colors

Okabe-Ito Colors - Three Groups

p1 <- ggplot(d1, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_okabeito()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point2(size = 2.5) +
  scale_color_okabeito()

plots(p1, p2, n_rows = 1)

Okabe-Ito Colors - Four Groups

p1 <- ggplot(d2, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_okabeito()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
  geom_point2(size = 2.5) +
  scale_color_okabeito()

plots(p1, p2, n_rows = 1)

Okabe-Ito Colors - Five Groups

p1 <- ggplot(d3, aes(x, y, colour = group)) +
  geom_line(linewidth = 1) +
  scale_color_okabeito()

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
  geom_point2(size = 2.5) +
  scale_color_okabeito()

plots(p1, p2, n_rows = 1)

Overview of Palette Colors