Plot method for posterior predictive checks
Source:R/plot.check_predictions.R
print.see_performance_pp_check.Rd
The plot()
method for the performance::check_predictions()
function.
Usage
# S3 method for class 'see_performance_pp_check'
print(
x,
size_line = 0.5,
size_point = 2,
size_bar = 0.7,
size_axis_title = base_size,
size_title = 12,
base_size = 10,
line_alpha = 0.15,
style = theme_lucid,
colors = unname(social_colors(c("green", "blue"))),
type = c("density", "discrete_dots", "discrete_interval", "discrete_both"),
x_limits = NULL,
...
)
# S3 method for class 'see_performance_pp_check'
plot(
x,
size_line = 0.5,
size_point = 2,
size_bar = 0.7,
size_axis_title = base_size,
size_title = 12,
base_size = 10,
line_alpha = 0.15,
style = theme_lucid,
colors = unname(social_colors(c("green", "blue"))),
type = c("density", "discrete_dots", "discrete_interval", "discrete_both"),
x_limits = NULL,
...
)
Arguments
- x
An object.
- size_line
Numeric value specifying size of line geoms.
- size_point
Numeric specifying size of point-geoms.
- size_bar
Size of bar geoms.
- base_size, size_axis_title, size_title
Numeric value specifying size of axis and plot titles.
- line_alpha
Numeric value specifying alpha of lines indicating
yrep
.- style
A ggplot2-theme.
- colors
Character vector of length two, indicating the colors (in hex-format) for points and line.
- type
Plot type for the posterior predictive checks plot. Can be
"density"
(default),"discrete_dots"
,"discrete_interval"
or"discrete_both"
(thediscrete_*
options are appropriate for models with discrete - binary, integer or ordinal etc. - outcomes).- x_limits
Numeric vector of length 2 specifying the limits of the x-axis. If not
NULL
, will zoom in the x-axis to the specified limits.- ...
Arguments passed to or from other methods.
See also
See also the vignette about check_model()
.
Examples
library(performance)
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
check_predictions(model)
# dot-plot style for count-models
d <- iris
d$poisson_var <- rpois(150, 1)
model <- glm(
poisson_var ~ Species + Petal.Length + Petal.Width,
data = d,
family = poisson()
)
out <- check_predictions(model)
plot(out, type = "discrete_dots")