Package index
-
compare_parameters()
compare_models()
- Compare model parameters of multiple models
-
dominance_analysis()
- Dominance Analysis
-
model_parameters()
parameters()
- Model Parameters
-
pool_parameters()
- Pool Model Parameters
-
random_parameters()
- Summary information from random effects
-
format(<parameters_model>)
print(<parameters_model>)
summary(<parameters_model>)
print_html(<parameters_model>)
print_md(<parameters_model>)
- Print model parameters
-
sort_parameters()
- Sort parameters by coefficient values
-
standardize_parameters()
standardize_posteriors()
- Parameters standardization
-
standardize_info()
- Get Standardization Information
-
model_parameters(<aov>)
- Parameters from ANOVAs
-
model_parameters(<befa>)
- Parameters from Bayesian Exploratory Factor Analysis
-
model_parameters(<default>)
- Parameters from (General) Linear Models
-
model_parameters(<zcpglm>)
- Parameters from Zero-Inflated Models
-
model_parameters(<cgam>)
- Parameters from Generalized Additive (Mixed) Models
-
model_parameters(<mlm>)
- Parameters from multinomial or cumulative link models
-
model_parameters(<glmmTMB>)
- Parameters from Mixed Models
-
model_parameters(<hclust>)
- Parameters from Cluster Models (k-means, ...)
-
model_parameters(<mira>)
- Parameters from multiply imputed repeated analyses
-
model_parameters(<lavaan>)
model_parameters(<principal>)
- Parameters from PCA, FA, CFA, SEM
-
model_parameters(<data.frame>)
model_parameters(<brmsfit>)
- Parameters from Bayesian Models
-
model_parameters(<BFBayesFactor>)
- Parameters from BayesFactor objects
-
model_parameters(<rma>)
- Parameters from Meta-Analysis
-
model_parameters(<htest>)
model_parameters(<coeftest>)
- Parameters from hypothesis tests
-
model_parameters(<glht>)
- Parameters from Hypothesis Testing
-
model_parameters(<glimML>)
- Parameters from special models
-
model_parameters(<t1way>)
- Parameters from robust statistical objects in
WRS2
-
standard_error()
- Standard Errors
-
ci(<default>)
- Confidence Intervals (CI)
-
p_value()
- p-values
-
degrees_of_freedom()
dof()
- Degrees of Freedom (DoF)
-
ci_kenward()
dof_kenward()
p_value_kenward()
se_kenward()
- Kenward-Roger approximation for SEs, CIs and p-values
-
ci_satterthwaite()
dof_satterthwaite()
p_value_satterthwaite()
se_satterthwaite()
- Satterthwaite approximation for SEs, CIs and p-values
-
ci_betwithin()
dof_betwithin()
p_value_betwithin()
- Between-within approximation for SEs, CIs and p-values
-
ci_ml1()
dof_ml1()
p_value_ml1()
- "m-l-1" approximation for SEs, CIs and p-values
-
equivalence_test(<lm>)
equivalence_test(<ggeffects>)
- Equivalence test
-
p_calibrate()
- Calculate calibrated p-values.
-
p_direction(<lm>)
- Probability of Direction (pd)
-
p_function()
consonance_function()
confidence_curve()
- p-value or consonance function
-
p_significance(<lm>)
- Practical Significance (ps)
-
bootstrap_model()
- Model bootstrapping
-
bootstrap_parameters()
- Parameters bootstrapping
-
simulate_model()
- Simulated draws from model coefficients
-
simulate_parameters()
- Simulate Model Parameters
-
reduce_parameters()
reduce_data()
- Dimensionality reduction (DR) / Features Reduction
-
select_parameters()
- Automated selection of model parameters
-
cluster_analysis()
- Cluster Analysis
-
cluster_centers()
- Find the cluster centers in your data
-
cluster_discrimination()
- Compute a linear discriminant analysis on classified cluster groups
-
cluster_meta()
- Metaclustering
-
cluster_performance()
- Performance of clustering models
-
n_clusters()
n_clusters_elbow()
n_clusters_gap()
n_clusters_silhouette()
n_clusters_dbscan()
n_clusters_hclust()
- Find number of clusters in your data
-
predict(<parameters_clusters>)
- Predict method for parameters_clusters objects
-
convert_efa_to_cfa()
efa_to_cfa()
- Conversion between EFA results and CFA structure
-
factor_analysis()
principal_components()
rotated_data()
predict(<parameters_efa>)
print(<parameters_efa>)
sort(<parameters_efa>)
closest_component()
- Principal Component Analysis (PCA) and Factor Analysis (FA)
-
get_scores()
- Get Scores from Principal Component Analysis (PCA)
-
n_factors()
n_components()
- Number of components/factors to retain in PCA/FA
-
reduce_parameters()
reduce_data()
- Dimensionality reduction (DR) / Features Reduction
-
reshape_loadings()
- Reshape loadings between wide/long formats
-
display(<parameters_model>)
display(<parameters_sem>)
display(<parameters_efa_summary>)
display(<parameters_efa>)
display(<equivalence_test_lm>)
print_table()
- Print tables in different output formats
-
format_order()
- Order (first, second, ...) formatting
-
format_parameters()
- Parameter names formatting
-
format_p_adjust()
- Format the name of the p-value adjustment methods
-
format_df_adjust()
- Format the name of the degrees-of-freedom adjustment methods
-
format(<compare_parameters>)
print(<compare_parameters>)
print_html(<compare_parameters>)
print_md(<compare_parameters>)
- Print comparisons of model parameters
-
parameters_type()
- Type of model parameters
-
reexports
equivalence_test
ci
n_parameters
p_direction
p_significance
standardize_names
supported_models
print_html
print_md
display
describe_distribution
demean
rescale_weights
visualisation_recipe
kurtosis
skewness
- Objects exported from other packages
-
reexports
equivalence_test
ci
n_parameters
p_direction
p_significance
standardize_names
supported_models
print_html
print_md
display
describe_distribution
demean
rescale_weights
visualisation_recipe
kurtosis
skewness
- Objects exported from other packages
-
qol_cancer
- Sample data set
-
fish
- Sample data set