Skip to contents

Comprehensive Model Parameters

compare_parameters() compare_models()
Compare model parameters of multiple models
dominance_analysis()
Dominance Analysis
model_parameters() parameters()
Model Parameters
pool_parameters()
Pool Model Parameters
random_parameters()
Summary information from random effects
format(<parameters_model>) print(<parameters_model>) summary(<parameters_model>) print_html(<parameters_model>) print_md(<parameters_model>)
Print model parameters
sort_parameters()
Sort parameters by coefficient values
standardize_parameters() standardize_posteriors()
Parameters standardization
standardize_info()
Get Standardization Information

Documentation of Specific Class Objects

model_parameters(<aov>)
Parameters from ANOVAs
model_parameters(<befa>)
Parameters from Bayesian Exploratory Factor Analysis
model_parameters(<default>)
Parameters from (General) Linear Models
model_parameters(<zcpglm>)
Parameters from Zero-Inflated Models
model_parameters(<cgam>)
Parameters from Generalized Additive (Mixed) Models
model_parameters(<mlm>)
Parameters from multinomial or cumulative link models
model_parameters(<glmmTMB>)
Parameters from Mixed Models
model_parameters(<hclust>)
Parameters from Cluster Models (k-means, ...)
model_parameters(<mira>)
Parameters from multiply imputed repeated analyses
model_parameters(<lavaan>) model_parameters(<principal>)
Parameters from PCA, FA, CFA, SEM
model_parameters(<data.frame>) model_parameters(<brmsfit>)
Parameters from Bayesian Models
model_parameters(<BFBayesFactor>)
Parameters from BayesFactor objects
model_parameters(<rma>)
Parameters from Meta-Analysis
model_parameters(<htest>) model_parameters(<coeftest>)
Parameters from hypothesis tests
model_parameters(<glht>)
Parameters from Hypothesis Testing
model_parameters(<glimML>)
Parameters from special models
model_parameters(<t1way>)
Parameters from robust statistical objects in WRS2

Standard Errors, Confidence Intervals, Degrees of Freedom and p-values

standard_error()
Standard Errors
ci(<default>)
Confidence Intervals (CI)
p_value()
p-values
degrees_of_freedom() dof()
Degrees of Freedom (DoF)

Approximation Methods

ci_kenward() dof_kenward() p_value_kenward() se_kenward()
Kenward-Roger approximation for SEs, CIs and p-values
ci_satterthwaite() dof_satterthwaite() p_value_satterthwaite() se_satterthwaite()
Satterthwaite approximation for SEs, CIs and p-values
ci_betwithin() dof_betwithin() p_value_betwithin()
Between-within approximation for SEs, CIs and p-values
ci_ml1() dof_ml1() p_value_ml1()
"m-l-1" approximation for SEs, CIs and p-values

Effect Existence and Significance

equivalence_test(<lm>) equivalence_test(<ggeffects>)
Equivalence test
p_calibrate()
Calculate calibrated p-values.
p_direction(<lm>)
Probability of Direction (pd)
p_function() consonance_function() confidence_curve()
p-value or consonance function
p_significance(<lm>)
Practical Significance (ps)

Parameter Sampling

bootstrap_model()
Model bootstrapping
bootstrap_parameters()
Parameters bootstrapping
simulate_model()
Simulated draws from model coefficients
simulate_parameters()
Simulate Model Parameters

Feature Reduction

reduce_parameters() reduce_data()
Dimensionality reduction (DR) / Features Reduction
select_parameters()
Automated selection of model parameters

Data Reduction

Cluster Analysis

cluster_analysis()
Cluster Analysis
cluster_centers()
Find the cluster centers in your data
cluster_discrimination()
Compute a linear discriminant analysis on classified cluster groups
cluster_meta()
Metaclustering
cluster_performance()
Performance of clustering models
n_clusters() n_clusters_elbow() n_clusters_gap() n_clusters_silhouette() n_clusters_dbscan() n_clusters_hclust()
Find number of clusters in your data
predict(<parameters_clusters>)
Predict method for parameters_clusters objects

Factors and Principal Components

convert_efa_to_cfa() efa_to_cfa()
Conversion between EFA results and CFA structure
factor_analysis() principal_components() rotated_data() predict(<parameters_efa>) print(<parameters_efa>) sort(<parameters_efa>) closest_component()
Principal Component Analysis (PCA) and Factor Analysis (FA)
get_scores()
Get Scores from Principal Component Analysis (PCA)
n_factors() n_components()
Number of components/factors to retain in PCA/FA
reduce_parameters() reduce_data()
Dimensionality reduction (DR) / Features Reduction
reshape_loadings()
Reshape loadings between wide/long formats

Table and Value Formatting

Functions exported from other packages

Example Data Sets

qol_cancer
Sample data set
fish
Sample data set