Convert Between Effect Sizes for Contingency Tables Correlations
Source:R/convert_between_xtabcorr.R
w_to_fei.Rd
Enables a conversion between different indices of effect size, such as Cohen's w to פ (Fei), and Cramer's V to Tschuprow's T.
Usage
w_to_fei(w, p)
w_to_v(w, nrow, ncol)
w_to_t(w, nrow, ncol)
w_to_c(w)
fei_to_w(fei, p)
v_to_w(v, nrow, ncol)
t_to_w(t, nrow, ncol)
c_to_w(c)
v_to_t(v, nrow, ncol)
t_to_v(t, nrow, ncol)
Arguments
- w, c, v, t, fei
Effect size to be converted
- p
Vector of expected values. See
stats::chisq.test()
.- nrow, ncol
The number of rows/columns in the contingency table.
References
Ben-Shachar, M.S., Patil, I., Thériault, R., Wiernik, B.M., Lüdecke, D. (2023). Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi‑Squared Statistic. Mathematics, 11, 1982. doi:10.3390/math11091982
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
See also
Other convert between effect sizes:
d_to_r()
,
diff_to_cles
,
eta2_to_f2()
,
odds_to_probs()
,
oddsratio_to_riskratio()
Examples
library(effectsize)
## 2D tables
## ---------
data("Music_preferences2")
Music_preferences2
#> Pop Rock Jazz Classic
#> Psych 151 130 12 7
#> Econ 77 6 111 4
#> Law 0 4 2 165
cramers_v(Music_preferences2, adjust = FALSE)
#> Cramer's V | 95% CI
#> -------------------------
#> 0.80 | [0.75, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
v_to_t(0.80, 3, 4)
#> [1] 0.7228816
tschuprows_t(Music_preferences2)
#> Tschuprow's T (adj.) | 95% CI
#> -----------------------------------
#> 0.72 | [0.68, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
## Goodness of fit
## ---------------
data("Smoking_FASD")
Smoking_FASD
#> FAS PFAS TD
#> 17 11 640
cohens_w(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#> Cohen's w | 95% CI
#> ------------------------
#> 0.11 | [0.03, 9.95]
#>
#> - One-sided CIs: upper bound fixed at [9.95~].
w_to_fei(0.11, p = c(0.015, 0.010, 0.975))
#> [1] 0.01105542
fei(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#> Fei | 95% CI
#> -------------------
#> 0.01 | [0.00, 1.00]
#>
#> - Adjusted for uniform expected probabilities.
#> - One-sided CIs: upper bound fixed at [1.00].
## Power analysis
## --------------
# See https://osf.io/cg64s/
p0 <- c(0.35, 0.65)
Fei <- 0.3
pwr::pwr.chisq.test(
w = fei_to_w(Fei, p = p0),
df = length(p0) - 1,
sig.level = 0.01,
power = 0.85
)
#>
#> Chi squared power calculation
#>
#> w = 0.4088311
#> N = 78.0676
#> df = 1
#> sig.level = 0.01
#> power = 0.85
#>
#> NOTE: N is the number of observations
#>