Compute rank epsilon squared (\(E^2_R\)) or rank eta squared
(\(\eta^2_H\)) (to accompany `stats::kruskal.test()`

), and Kendall's *W*
(to accompany `stats::friedman.test()`

) effect sizes for non-parametric (rank
sum) one-way ANOVAs.

## Usage

```
rank_epsilon_squared(
x,
groups,
data = NULL,
ci = 0.95,
alternative = "greater",
iterations = 200,
verbose = TRUE,
...
)
rank_eta_squared(
x,
groups,
data = NULL,
ci = 0.95,
alternative = "greater",
iterations = 200,
verbose = TRUE,
...
)
kendalls_w(
x,
groups,
blocks,
data = NULL,
blocks_on_rows = TRUE,
ci = 0.95,
alternative = "greater",
iterations = 200,
verbose = TRUE,
...
)
```

## Arguments

- x
Can be one of:

A numeric or ordered vector, or a character name of one in

`data`

.A list of vectors (for

`rank_eta/epsilon_squared()`

).A matrix of

`blocks x groups`

(for`kendalls_w()`

) (or`groups x blocks`

if`blocks_on_rows = FALSE`

). See details for the`blocks`

and`groups`

terminology used here.A formula in the form of:

`DV ~ groups`

for`rank_eta/epsilon_squared()`

.`DV ~ groups | blocks`

for`kendalls_w()`

(See details for the`blocks`

and`groups`

terminology used here).

- groups, blocks
A factor vector giving the group / block for the corresponding elements of

`x`

, or a character name of one in`data`

. Ignored if`x`

is not a vector.- data
An optional data frame containing the variables.

- ci
Confidence Interval (CI) level

- alternative
a character string specifying the alternative hypothesis; Controls the type of CI returned:

`"two.sided"`

(default, two-sided CI),`"greater"`

or`"less"`

(one-sided CI). Partial matching is allowed (e.g.,`"g"`

,`"l"`

,`"two"`

...). See*One-Sided CIs*in effectsize_CIs.- iterations
The number of bootstrap replicates for computing confidence intervals. Only applies when

`ci`

is not`NULL`

.- verbose
Toggle warnings and messages on or off.

- ...
Arguments passed to or from other methods. When

`x`

is a formula, these can be`subset`

and`na.action`

.- blocks_on_rows
Are blocks on rows (

`TRUE`

) or columns (`FALSE`

).

## Details

The rank epsilon squared and rank eta squared are appropriate for
non-parametric tests of differences between 2 or more samples (a rank based
ANOVA). See stats::kruskal.test. Values range from 0 to 1, with larger
values indicating larger differences between groups.

Kendall's *W* is appropriate for non-parametric tests of differences between
2 or more dependent samples (a rank based rmANOVA), where each `group`

(e.g.,
experimental condition) was measured for each `block`

(e.g., subject). This
measure is also common as a measure of reliability of the rankings of the
`groups`

between raters (`blocks`

). See stats::friedman.test. Values range
from 0 to 1, with larger values indicating larger differences between groups
/ higher agreement between raters.

## Confidence (Compatibility) Intervals (CIs)

Confidence intervals for \(E^2_R\), \(\eta^2_H\), and Kendall's *W* are
estimated using the bootstrap method (using the `{boot}`

package).

## Ties

When tied values occur, they are each given the average of the ranks that
would have been given had no ties occurred. This results in an effect size of
reduced magnitude. A correction has been applied for Kendall's *W*.

## CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information
in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility)
intervals and p values are complementary summaries of parameter uncertainty
given the observed data. A dichotomous hypothesis test could be performed
with either a CI or a p value. The 100 (1 - \(\alpha\))% confidence
interval contains all of the parameter values for which *p* > \(\alpha\)
for the current data and model. For example, a 95% confidence interval
contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null
(no effect) is true. Rather, it suggests that the observed data together with
the model and its assumptions combined do not provided clear evidence against
a parameter value of 0 (same as with any other value in the interval), with
the level of this evidence defined by the chosen \(\alpha\) level (Rafi &
Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no
effect, additional judgments about what parameter values are "close enough"
to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser,
1996).

## Bootstrapped CIs

Some effect sizes are directionless–they do have a minimum value that would
be interpreted as "no effect", but they cannot cross it. For example, a null
value of Kendall's W is 0, indicating no difference between
groups, but it can never have a negative value. Same goes for
U2 and Overlap: the null value of \(U_2\) is
0.5, but it can never be smaller than 0.5; am *Overlap* of 1 means "full
overlap" (no difference), but it cannot be larger than 1.

When bootstrapping CIs for such effect sizes, the bounds of the CIs will
never cross (and often will never cover) the null. Therefore, these CIs
should not be used for statistical inference.

## Plotting with `see`

The `see`

package contains relevant plotting functions. See the plotting vignette in the `see`

package.

## References

Kendall, M.G. (1948) Rank correlation methods. London: Griffin.

Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in sport sciences, 1(21), 19-25.

## See also

Other rank-based effect sizes:
`p_superiority()`

,
`rank_biserial()`

Other effect sizes for ANOVAs:
`eta_squared()`

## Examples

```
# \donttest{
# Rank Eta/Epsilon Squared
# ========================
rank_eta_squared(mpg ~ cyl, data = mtcars)
#> Eta2 (rank) | 95% CI
#> --------------------------
#> 0.82 | [0.77, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
rank_epsilon_squared(mpg ~ cyl, data = mtcars)
#> Epsilon2 (rank) | 95% CI
#> ------------------------------
#> 0.83 | [0.78, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
# Kendall's W
# ===========
dat <- data.frame(
cond = c("A", "B", "A", "B", "A", "B"),
ID = c("L", "L", "M", "M", "H", "H"),
y = c(44.56, 28.22, 24, 28.78, 24.56, 18.78)
)
(W <- kendalls_w(y ~ cond | ID, data = dat, verbose = FALSE))
#> Kendall's W | 95% CI
#> --------------------------
#> 0.11 | [0.11, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
interpret_kendalls_w(0.11)
#> [1] "slight agreement"
#> (Rules: landis1977)
#>
interpret(W, rules = "landis1977")
#> Kendall's W | 95% CI | Interpretation
#> ---------------------------------------------
#> 0.11 | [0.11, 1.00] | slight agreement
#>
#> - One-sided CIs: upper bound fixed at [1.00].
#> - Interpretation rule: landis1977
# }
```