
Convert Between Metrics of Change in Probabilities and Probabilities
Source:R/convert_between_riskchange_ro_probs.R
oddsratio_to_probs.Rd
Convert Between Metrics of Change in Probabilities and Probabilities
Usage
oddsratio_to_probs(OR, p0, log = FALSE, odds = FALSE, ...)
logoddsratio_to_probs(logOR, p0, log = TRUE, odds = FALSE, ...)
riskratio_to_probs(RR, p0, odds = FALSE, ...)
arr_to_probs(ARR, p0, odds = FALSE, ...)
nnt_to_probs(NNT, p0, odds = FALSE, ...)
Arguments
- OR, logOR, RR, ARR, NNT
Odds-ratio of
odds(p1)/odds(p0)
, log-Odds-ratio oflog(odds(p1)/odds(p0))
, Risk ratio ofp1/p0
, Absolute Risk Reduction ofp1 - p0
, or Number-needed-to-treat of1/(p1 - p0)
.OR
andlogOR
can also be a logistic regression model.- p0
Baseline risk
- log
If:
TRUE
:In
oddsratio_to_*()
,OR
input is treated aslog(OR)
.In
*_to_oddsratio()
, returned value islog(OR)
.
FALSE
:In
logoddsratio_to_*()
,logOR
input is treated asOR
.In
*_to_logoddsratio()
, returned value isOR
.
- odds
Should odds be returned instead of probabilities?
- ...
Arguments passed to and from other methods.
See also
oddsratio()
, riskratio()
, arr()
, and nnt()
,
odds_to_probs()
, and oddsratio_to_arr()
and others.
Examples
p0 <- 0.4
p1 <- 0.7
(OR <- probs_to_odds(p1) / probs_to_odds(p0))
#> [1] 3.5
(RR <- p1 / p0)
#> [1] 1.75
(ARR <- p1 - p0)
#> [1] 0.3
(NNT <- arr_to_nnt(ARR))
#> [1] 3.333333
riskratio_to_probs(RR, p0 = p0)
#> [1] 0.7
oddsratio_to_probs(OR, p0 = p0)
#> [1] 0.7
all.equal(nnt_to_probs(NNT, p0 = p0, odds = TRUE),
probs_to_odds(p1))
#> [1] TRUE
arr_to_probs(-ARR, p0 = p1)
#> [1] 0.4
nnt_to_probs(-NNT, p0 = p1)
#> [1] 0.4
# RR |>
# riskratio_to_arr(p0) |>
# arr_to_oddsratio(p0) |>
# oddsratio_to_nnt(p0) |>
# nnt_to_probs(p0)