Interpretation of Bayesian diagnostic indices, such as Effective Sample Size (ESS) and Rhat.
Arguments
- ess
Value or vector of Effective Sample Size (ESS) values.
- rules
A character string (see Rules) or a custom set of
rules()
.- rhat
Value or vector of Rhat values.
Rules
References
Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2019). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. arXiv preprint arXiv:1903.08008.
Examples
interpret_ess(1001)
#> [1] "sufficient"
#> (Rules: burkner2017)
#>
interpret_ess(c(852, 1200))
#> [1] "insufficient" "sufficient"
#> (Rules: burkner2017)
#>
interpret_rhat(1.00)
#> [1] "converged"
#> (Rules: vehtari2019)
#>
interpret_rhat(c(1.5, 0.9))
#> [1] "failed" "converged"
#> (Rules: vehtari2019)
#>