Reverse-score variables (change the keying/scoring direction).
Usage
data_reverse(x, ...)
reverse_scale(x, ...)
# S3 method for numeric
data_reverse(x, range = NULL, verbose = TRUE, ...)
# S3 method for data.frame
data_reverse(
x,
select = NULL,
exclude = NULL,
range = NULL,
ignore_case = FALSE,
...
)
Arguments
- x
A (grouped) data frame, numeric vector or factor.
- ...
Arguments passed to or from other methods.
- range
Initial (old) range of values. If
NULL
, will take the range of the input vector (range(x)
).- verbose
Toggle warnings.
- select
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g.,
column_name
),a string with the variable name (e.g.,
"column_name"
), or a character vector of variable names (e.g.,c("col1", "col2", "col3")
),a formula with variable names (e.g.,
~column_1 + column_2
),a vector of positive integers, giving the positions counting from the left (e.g.
1
orc(1, 3, 5)
),a vector of negative integers, giving the positions counting from the right (e.g.,
-1
or-1:-3
),one of the following select-helpers:
starts_with("")
,ends_with("")
,contains("")
, a range using:
orregex("")
,or a function testing for logical conditions, e.g.
is.numeric()
(oris.numeric
), or any user-defined function that selects the variables for which the function returnsTRUE
(like:foo <- function(x) mean(x) > 3
),ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a-
, e.g.-ends_with("")
,-is.numeric
or-Sepal.Width:Petal.Length
. Note: Negation means that matches are excluded, and thus, theexclude
argument can be used alternatively. For instance,select=-ends_with("Length")
(with-
) is equivalent toexclude=ends_with("Length")
(no-
). In case negation should not work as expected, use theexclude
argument instead.
If
NULL
, selects all columns. Patterns that found no matches are silently ignored, e.g.find_columns(iris, select = c("Species", "Test"))
will just return"Species"
.- exclude
See
select
, however, column names matched by the pattern fromexclude
will be excluded instead of selected. IfNULL
(the default), excludes no columns.- ignore_case
Logical, if
TRUE
and when one of the select-helpers or a regular expression is used inselect
, ignores lower/upper case in the search pattern when matching against variable names.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
See also
Other transform utilities:
data_rescale()
,
normalize()
,
ranktransform()
,
standardize()
Examples
data_reverse(c(1, 2, 3, 4, 5))
#> [1] 5 4 3 2 1
data_reverse(c(-2, -1, 0, 2, 1))
#> [1] 2 1 0 -2 -1
# Specify the "theoretical" range of the input vector
data_reverse(c(1, 3, 4), range = c(0, 4))
#> [1] 3 1 0
# Factor variables
data_reverse(factor(c(1, 2, 3, 4, 5)))
#> [1] 5 4 3 2 1
#> Levels: 1 2 3 4 5
data_reverse(factor(c(1, 2, 3, 4, 5)), range = 0:10)
#> [1] 9 8 7 6 5
#> Levels: 0 1 2 3 4 5 6 7 8 9 10
# Data frames
head(data_reverse(iris))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 7.1 2.9 6.5 2.4 virginica
#> 2 7.3 3.4 6.5 2.4 virginica
#> 3 7.5 3.2 6.6 2.4 virginica
#> 4 7.6 3.3 6.4 2.4 virginica
#> 5 7.2 2.8 6.5 2.4 virginica
#> 6 6.8 2.5 6.2 2.2 virginica
head(data_reverse(iris, select = "Sepal.Length"))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 7.1 3.5 1.4 0.2 setosa
#> 2 7.3 3.0 1.4 0.2 setosa
#> 3 7.5 3.2 1.3 0.2 setosa
#> 4 7.6 3.1 1.5 0.2 setosa
#> 5 7.2 3.6 1.4 0.2 setosa
#> 6 6.8 3.9 1.7 0.4 setosa